资源科学 ›› 2020, Vol. 42 ›› Issue (3): 527-535.doi: 10.18402/resci.2020.03.11
收稿日期:
2019-03-15
修回日期:
2019-07-15
出版日期:
2020-03-25
发布日期:
2020-05-25
通讯作者:
杨来科
作者简介:
徐博,男,安徽砀山人,博士研究生,主要从事全球价值链与碳排放研究。E-mail: ecnuxubo@163.com
基金资助:
XU Bo1,2, YANG Laike1,4(), QIAN Zhiquan3
Received:
2019-03-15
Revised:
2019-07-15
Online:
2020-03-25
Published:
2020-05-25
Contact:
YANG Laike
摘要:
随着全球价值链(GVC)在全球经济与贸易中作用的提升,GVC的发展对于资源与环境的影响引起了越来越多的关注。本文以全球主要经济体为研究对象,在环境库兹涅茨曲线(EKC)模型基础上,将GVC分工地位指数和CDIAC碳排放数据库进行匹配组成面板数据,检验GVC分工地位对于碳排放水平的影响,并运用联立方程模型对实证结果进行内生性分析和稳健性检验。研究表明:与EKC模型相类似,GVC分工地位的上升对于碳排放的影响呈倒U型关系。机制分析发现,GVC分工地位可以通过提高绿色能源使用率来降低碳排放量。GVC分工地位也可以通过研究与发展(R&D)投入和创新创业水平影响碳排放,但同样也是一种倒U型关系。同时,R&D投入水平的增加和创新创业水平的提升可以提高GVC分工地位,有助于经济体更快地跨过转折点,转向更加低碳环保的发展模式。本文的结论丰富了全球价值链理论在环境方面的应用,为探索碳减排理论提供了新的思路。
徐博, 杨来科, 钱志权. 全球价值链分工地位对于碳排放水平的影响[J]. 资源科学, 2020, 42(3): 527-535.
XU Bo, YANG Laike, QIAN Zhiquan. The impact of global value chain position on carbon emissions[J]. Resources Science, 2020, 42(3): 527-535.
表1
变量描述性统计"
变量名 | 均值 | 标准差 | 最小值 | 最大值 | 变量定义及单位 |
---|---|---|---|---|---|
C | 166.470 | 376.522 | 0.563 | 2654.360 | 碳排放量/百万t |
Population | 1.2E+08 | 2.8E+08 | 3.8E+05 | 1.3E+09 | 人口/人 |
Pergdp | 2.3E+04 | 1.9E+04 | 451.218 | 1.1E+05 | 实际人均GDP/美元,以1999年为基期 |
GVC | 0.126 | 0.143 | -0.216 | 0.562 | GVC分工地位 |
Reenergy | 15.196 | 13.167 | 0.155 | 52.633 | 可再生能源占能源消费比重/% |
Export | 2.6E+05 | 3.5E+05 | 2.6E+03 | 2.1E+06 | 出口额/百万美元 |
FDI | 3.60E+10 | 6.80E+10 | 2.00E+06 | 7.30E+11 | FDI净流入/美元 |
RD | 1.392 | 0.893 | 0.048 | 3.914 | 研发投入支出占GDP比重/% |
Entre | 4.347 | 2.412 | 0.450 | 14.470 | 18~64岁创业人口比重/% |
Rail | 2.20E+04 | 3.70E+04 | 275 | 2.30E+05 | 铁路里程/km |
Labor | 3.429 | 0.354 | 1.792 | 3.947 | 高技能劳动报酬占总劳动报酬比重/% |
表2
GVC分工地位对于碳排放的影响"
总碳排放量 | 人均碳排放 | ||||||
---|---|---|---|---|---|---|---|
模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | ||
GVC | 0.242** | 0.271** | 0.247** | 0.258** | |||
(2.139) | (2.292) | (2.167) | (2.178) | ||||
GVC2 | -0.631** | -0.690** | -0.658** | -0.759** | |||
(-2.050) | (-2.154) | (-2.126) | (-2.386) | ||||
Pergdp | 0.254*** | 0.248*** | 0.308*** | 0.279*** | |||
(3.128) | (3.308) | (3.854) | (3.839) | ||||
Pergdp2 | -0.011** | -0.015*** | -0.014*** | -0.016*** | |||
(-2.386) | (-3.495) | (-2.896) | (-3.773) | ||||
Population | 0.691*** | 0.751*** | 0.820*** | ||||
(6.275) | (7.034) | (7.237) | |||||
Reenergy | -0.029*** | -0.029*** | -0.027*** | -0.026*** | -0.028*** | -0.026*** | |
(-16.567) | (-18.736) | (-15.749) | (-17.074) | (-19.156) | (-16.478) | ||
Export | 0.142*** | 0.198*** | 0.180*** | 0.155*** | 0.219*** | 0.180*** | |
(5.112) | (9.882) | (6.019) | (5.598) | (12.196) | (6.023) | ||
FDI | -0.004 | -0.003 | -0.004 | -0.005 | -0.003 | -0.004 | |
(-1.061) | (-1.012) | (-1.145) | (-1.233) | (-0.907) | (-1.145) | ||
常数项 | -10.416*** | -10.703*** | -12.697*** | -11.447*** | -10.536*** | -11.322*** | |
(-5.125) | (-5.579) | (-6.173) | (-35.668) | (-51.904) | (-38.519) | ||
观测值 | 450 | 395 | 384 | 450 | 395 | 384 | |
调整后R2 | 0.708 | 0.734 | 0.744 | 0.669 | 0.689 | 0.705 | |
个体固定效应 | YES | YES | YES | YES | YES | YES | |
时间固定效应 | YES | YES | YES | YES | YES | YES |
表3
联立方程估计和机制分析"
模型7 | 模型8 | 模型9 | 模型10 | 模型11 | 模型12 | |
---|---|---|---|---|---|---|
碳排放量 | ||||||
GVC | 4.296*** | 3.632*** | 2.801*** | 1.121* | 3.676*** | 3.068*** |
(11.026) | (8.633) | (5.493) | (1.883) | (7.642) | (5.791) | |
GVC2 | -2.948*** | 0.315 | -2.333** | -2.939*** | -2.278** | -2.255** |
(-3.695) | (0.324) | (-2.434) | (-3.179) | (-2.557) | (-2.563) | |
Reenergy | -0.021*** | -0.012*** | -0.021*** | -0.021*** | -0.020*** | -0.020*** |
(-13.462) | (-4.268) | (-9.466) | (-9.773) | (-11.185) | (-11.485) | |
GVC | -0.049*** | |||||
(-4.189) | ||||||
RD | -0.041 | -0.015 | ||||
(-0.711) | (-0.279) | |||||
GVC | 0.595** | 2.731*** | ||||
(2.476) | (5.254) | |||||
GVC | -0.544*** | |||||
(-4.530) | ||||||
Entre | 0.047*** | 0.041*** | ||||
(3.174) | (2.756) | |||||
GVC | -0.006 | 0.236** | ||||
(-0.123) | (2.176) | |||||
GVC | -0.016** | |||||
(-2.538) | ||||||
其他控制变量 | YES | YES | YES | YES | YES | YES |
GVC分工地位 | ||||||
C | 0.165*** | 0.127*** | 0.124*** | 0.124*** | 0.137*** | 0.137*** |
(15.318) | (12.338) | (11.801) | (11.722) | (13.308) | (13.348) | |
RD | 0.052*** | 0.046*** | 0.045*** | 0.046*** | 0.052*** | 0.054*** |
(7.696) | (6.261) | (5.811) | (5.841) | (7.370) | (7.628) | |
Entre | 0.008*** | 0.006** | 0.007*** | 0.007*** | 0.001 | 0.001 |
(3.187) | (2.486) | (2.798) | (2.708) | (0.342) | (0.409) | |
其他控制变量 | YES | YES | YES | YES | YES | YES |
观测值 | 233 | 233 | 233 | 233 | 233 | 233 |
[1] | Grossman G M, Krueger A B . Economic growth and the environment[J]. The Quarterly Journal of Economics, 1995,110(2):353-377. |
[2] | Kaika D, Zervas E . The environmental Kuznets curve (EKC) theory-Part A: Concept, causes and the CO2 emissions case[J]. Energy Policy, 2013,62:1392-1402. |
[3] | Suri V, Chapman D . Economic growth, trade and energy: Implications for the environmental Kuznets curve[J]. Ecological Economics, 1998,25(2):195-208. |
[4] | Cole M A . Trade, the pollution haven hypojournal and the environmental Kuznets curve: Examining the linkages[J]. Ecological Economics, 2004,48(1):71-81. |
[5] | Kearsley A, Riddel M . A further inquiry into the pollution haven hypojournal and the environmental Kuznets curve[J]. Ecological Economics, 2010,69(4):905-919. |
[6] | Koopman R, Powers W, Wang Z , et al. Give Credit Where Credit Is Due: Tracing Value Added in Global Production Chains[R]. NBER Working Paper No. 16426, 2010. |
[7] | Wang Z, Wei S J, Yu X , et al. Characterizing global value chains: Production length and upstreamness[R]. NBER Working Paper No.23261, 2017. |
[8] | 李艳梅, 牛苗苗, 张红丽 . 京津冀区域内增加值贸易的经济收益和隐含碳排放比较[J]. 资源科学, 2019,41(9):1619-1629. |
[ Li Y M, Niu M M, Zhang H L . Comparison of economic benefits and embodied carbon emissions of intraregional value-added trade in the Beijing-Tianjin-Hebei region[J]. Resources Science, 2019,41(9):1619-1629.] | |
[9] | 张红霞, 张哲, 盛科荣 . 全球价值链分工地位对中国制造业碳排放的影响: 基于Stirpat模型的实证研究[J]. 生态经济, 2018,34(4):25-29. |
[ Zhang H X, Zhang Z, Sheng K R . Effects of global value chain position on the carbon emissions of manufacturing industry in China: An empirical study based on the STIRPAT model[J]. Ecological Economy, 2018,34(4):25-29.] | |
[10] | 谢会强, 黄凌云, 刘冬冬 . 全球价值链嵌入提高了中国制造业碳生产率吗[J]. 国际贸易问题, 2018, ( 12):109-121. |
[ Xie H Q, Huang L Y, Liu D D . Does GVC participation increase Chinese manufacturing’s carbon productivity[J]. Journal of International Trade, 2018, ( 12):109-121.] | |
[11] | Liu H X, Li J L, Long H Y , et al. Promoting energy and environmental efficiency within a positive feedback loop: Insights from global value chain[J]. Energy Policy, 2018,121:175-184. |
[12] | 彭星, 李斌 . 全球价值链视角下中国嵌入制造环节的经济碳排放效应研究[J]. 财贸研究, 2013,24(6):18-26. |
[ Peng X, Li B . The study on economic carbon emissions effect of China’s embedding in the manufacturing sector under global value chain perspective[J]. Finance and Trade Research, 2013,24(6):18-26.] | |
[13] | 吕延方, 崔兴华, 王冬 . 全球价值链参与度与贸易隐含碳[J]. 数量经济技术经济研究, 2019,36(2):45-65. |
[ Lv Y F, Cui X H, Wang D . GVC participation and carbon embodied in international trade: Nonlinear analysis based on GMRIO and PSTR model[J]. The Journal of Quantitative & Technical Economics, 2019,36(2):45-65.] | |
[14] | 陶长琪, 徐志琴 . 融入全球价值链有利于实现贸易隐含碳减排吗?[J]. 数量经济研究, 2019,10(1):16-31. |
[ Tao C Q, Xu Z Q . Is Integrating global value chains conducive to achieving CO2 mitigation in foreign trade?[J]. The Journal of Quantitative Economics, 2019,10(1):16-31.] | |
[15] | 王玉燕, 王建秀, 阎俊爱 . 全球价值链嵌入的节能减排双重效应: 来自中国工业面板数据的经验研究[J]. 中国软科学, 2015, ( 8):148-162. |
[ Wang Y Y, Wang J X, Yan J A . The double effect of global value chain embeddedness on energy conservation and emission reduction: An empirical study on panel data of China’s industries[J]. China Soft Science, 2015, ( 8):148-162.] | |
[16] | Meng B, Peters G P, Wang Z . Tracing CO2 emissions in Global Value Chains[J]. Energy Economics, 2018,73:24-42. |
[17] | Peters G P, Minx J C, Weber C L , et al. Growth in emission transfers via international trade from 1990 to 2008[J]. Proceedings of the National Academy of Sciences, 2011,108(21):8903-8908. |
[18] | Arto I, Dietzenbacher E . Drivers of the growth in global greenhouse gas emissions[J]. Environmental Science & Technology, 2014,48(10):5388-5394. |
[19] | 王文举, 向其凤 . 国际贸易中的隐含碳排放核算及责任分配[J]. 中国工业经济, 2011, ( 10):56-64. |
[ Wang W J, Xiang Q F . Accounting and responsibility analysis on carbon emissions embodied in international trade[J]. China Industrial Economics, 2011, ( 10):56-64.] | |
[20] | Xing Y . Rising wages, yuan’s appreciation and China’s processing exports[J]. China Economic Review, 2018,48:114-122. |
[21] | Maddison A . Growth and slowdown in advanced capitalist economies: Techniques of quantitative assessment[J]. Journal of Economic Literature, 1987,25(2):649-698. |
[22] | Poulsen RT, Ponte S, Sornn-Friese H . Environmental upgrading in global value chains: The potential and limitations of ports in the greening of maritime transport[J]. Geoforum, 2018,89:83-95. |
[23] | 王宪恩, 段志远, 王培博 , 等. 1990-2014年典型经济体技术变革与结构调整的碳排放驱动效应测度[J]. 资源科学, 2018,40(11):2317-2327. |
[ Wang X E, Duan Z Y, Wang P B , et al. Study on measurement of carbon-driving effects from technological change and structural adjustment in typical countries from 1990 to 2014[J]. Resources Science, 2018,40(11):2317-2327.] | |
[24] | 刘维林, 李兰冰, 刘玉海 . 全球价值链嵌入对中国出口技术复杂度的影响[J]. 中国工业经济, 2014, ( 6):83-95. |
[ Liu W L, Li L B, Liu Y H . The impact of global value chain embeddedness on technological sophistication of China’s export[J]. China Industrial Economics, 2014, ( 6):83-95.] | |
[25] | 吕越, 陈帅, 盛斌 . 嵌入全球价值链会导致中国制造的“低端锁定”吗?[J]. 管理世界, 2018,34(8):11-29. |
[ Lv Y, Chen S, Sheng B . Does embedding the global value chain lead to Chinese manufacture’s “Low-end Locking”?[J]. Management World, 2018,34(8):11-29.] | |
[26] | 马丽, 张琳 . 国际制造业转移与碳转移的时空耦合效应[J]. 资源科学, 2017,39(12):2408-2419. |
[ Ma L, Zhang L . Spatio-temporal coupling relationship between international manufacturing transfer and CO2 emissions[J]. Resources Science, 2017,39(12):2408-2419.] | |
[27] | Koopman R, Wang Z, Wei S J . Tracing value-added and double counting in gross exports[J]. American Economic Review, 2014,104(2):459-494. |
[28] | 林基, 杨来科 . 外商直接投资、出口贸易与二氧化碳排放: 基于东亚发展中经济体与发达经济体的比较研究[J]. 国际贸易问题, 2013(10):129-137. |
[ Lin J, Yang L K . FDI, export and carbon dioxide emissions: A comparative study with east asian developing and developed economies[J]. Journal of International Trade, 2013(10):129-137.] | |
[29] | 韩永辉, 李子文, 张帆 , 等. 中国双向FDI的环境效应[J]. 资源科学, 2019,41(11):2043-2058. |
[ Han Y H, Li Z W, Zhang F , et al. Environmental effects of bidirectional FDI in China[J]. Resources Science, 2019,41(11):2043-2058.] | |
[30] | 田毕飞, 陈紫若 . 创业与全球价值链分工地位: 效应与机理[J]. 中国工业经济, 2017, ( 6):136-154. |
[ Tian B F, Chen Z R . Entrepreneurship and global value chain’s position: Effect and mechanism[J]. China Industrial Economics, 2017, ( 6):136-154.] | |
[31] | Boden T A, Marland G, Andres R J . Global, Regional, and National Fossil-Fuel CO2 Emissions[EB/OL]. ( 2017- 09- 26) [2019-01-22]. . |
[32] | Lemieux T . Increasing residual wage inequality: Composition effects, noisy data, or rising demand for skill[J]. American Economic Review, 2006,96(3):461-498. |
[33] | Hettige H, Mani M, Wheeler D . Industrial pollution in economic development: The environmental Kuznets curve revisited[J]. Journal of Development Economics, 2000,62(2):445-476. |
[34] | Dinda S, Coondoo D, Pal M . Air quality and economic growth: An empirical study[J]. Ecological Economics, 2000,34(3):409-423. |
[35] | Meng B, Liu Y, Andrew R , et al. More than half of China’s CO2 emissions are from micro, small and medium-sized enterprises[J]. Applied Energy, 2018,230:712-725. |
[1] | 董雪松, 黄健柏, 钟美瑞, 谌金宇, 刘刚, 宋益. 技术进步对关键金属矿产需求影响的研究综述[J]. 资源科学, 2020, 42(8): 1592-1603. |
[2] | 熊航, 静峥, 展进涛. 不同环境规制政策对中国规模以上工业企业技术创新的影响[J]. 资源科学, 2020, 42(7): 1348-1360. |
[3] | 佘群芝, 吴肖丽, 潘安. 气候资金对受援国碳排放的影响[J]. 资源科学, 2020, 42(6): 1015-1026. |
[4] | 余娇, 赵荣钦, 肖连刚, 张林静, 王帅, 揣小伟, 韩雨承, 焦士兴. 基于“水—能—碳”关联的城市污水处理系统碳排放研究[J]. 资源科学, 2020, 42(6): 1052-1062. |
[5] | 刘琼, 肖海峰. 农地经营规模与财政支农政策对农业碳排放的影响[J]. 资源科学, 2020, 42(6): 1063-1073. |
[6] | 彭红松, 郭丽佳, 章锦河, 钟士恩, 虞虎, 韩娅. 区域经济增长与资源环境压力的关系研究进展[J]. 资源科学, 2020, 42(4): 593-606. |
[7] | 朱卫未, 缪子阳, 淦贵生. 基于Context-dependent DEA方法的碳排放减额分配策略[J]. 资源科学, 2020, 42(11): 2170-2183. |
[8] | 李艳梅,牛苗苗,张红丽. 京津冀区域内增加值贸易的经济收益和隐含碳排放比较[J]. 资源科学, 2019, 41(9): 1619-1629. |
[9] | 李寒冰,金晓斌,杨绪红,徐伟义,周寅康. 不同农田管理措施对土壤碳排放强度影响的Meta分析[J]. 资源科学, 2019, 41(9): 1630-1640. |
[10] | 王若梅,马海良,王锦. 基于水-土要素匹配视角的农业碳排放时空分异及影响因素——以长江经济带为例[J]. 资源科学, 2019, 41(8): 1450-1461. |
[11] | 王悦, 李锋, 孙晓. 城市家庭消费碳排放研究进展[J]. 资源科学, 2019, 41(7): 1201-1212. |
[12] | 张梅, 黄贤金, 揣小伟, 朱振宇, 汪煜. 胡焕庸线两侧城镇建设用地变化及其碳排放差异[J]. 资源科学, 2019, 41(7): 1262-1273. |
[13] | 赵永斌, 丛建辉, 杨军, 张艺璇. 中国碳市场配额分配方法探索[J]. 资源科学, 2019, 41(5): 872-883. |
[14] | 展进涛, 徐钰娇, 葛继红. 考虑碳排放成本的中国农业绿色生产率变化[J]. 资源科学, 2019, 41(5): 884-896. |
[15] | 范建双, 周琳. 中国建筑业碳排放时空特征及分省贡献[J]. 资源科学, 2019, 41(5): 897-907. |
|