资源科学 ›› 2020, Vol. 42 ›› Issue (3): 499-507.doi: 10.18402/resci.2020.03.08
• 专栏:黄河流域高质量发展的资源禀赋与统筹利用 • 上一篇 下一篇
李慧娟1,2, 师长兴1, 马小晴1,2, 刘慰1,2
收稿日期:
2019-10-28
修回日期:
2020-01-22
出版日期:
2020-03-25
发布日期:
2020-05-25
通讯作者:
师长兴
作者简介:
李慧娟,女,河南郑州人,博士研究生,主要从事河流地貌和流域输沙研究。E-mail: lihj. 17b@igsnrr.ac.cn
基金资助:
LI Huijuan1,2, SHI Changxing1, MA Xiaoqing1,2, LIU Wei1,2
Received:
2019-10-28
Revised:
2020-01-22
Online:
2020-03-25
Published:
2020-05-25
Contact:
SHI Changxing
摘要:
窟野河流域位于黄河中游砒砂岩分布区,生态环境极其恶劣,是黄河中游粗泥沙的主要来源区之一,近几十年来该流域径流和输沙发生了显著变化,因此深入探究窟野河流域产流产沙变化的原因及其影响程度,对推进黄河中游水土保持综合治理具有重要借鉴意义。本文采用Mann-Kendall非参数检验、突变点检验等统计方法,分析了窟野河流域1955—2015年年径流量和输沙量变化。根据水量平衡原理,通过弹性系数法和双累积曲线法,定量估算了不同时期气候变化(降水量和潜在蒸散发)和人类活动对径流量和输沙量变化的贡献程度。结果表明:①61年间窟野河年径流量和输沙量均呈现显著减少趋势,并在1996年发生突变,且自2012年以来其水沙关系发生明显变化。②该流域气候变化和人类活动对年径流量减少的贡献率分别为18.53%和81.47%,对年输沙量减少的贡献率分别为3.59%和96.41%。以植被恢复和煤炭开采为主的人类活动是导致该流域年径流量和年输沙量减少的重要原因。③该流域多年的水土保持和其他人类活动已较大程度地减少了流域产沙,但同时也大幅度地降低了本已短缺的水资源量,未来在全球气候变化背景下,参考之前的治理成效规划未来的水土保持工程和调整流域产业结构,达到生态保护和高质量发展是一个需要认真思考的问题。
李慧娟, 师长兴, 马小晴, 刘慰. 黄河中游窟野河流域水沙变化影响因素定量评估[J]. 资源科学, 2020, 42(3): 499-507.
LI Huijuan, SHI Changxing, MA Xiaoqing, LIU Wei. Quantification of the influencing factors of runoff and sediment discharge changes of the Kuye River catchment in the middle reaches of the Yellow River[J]. Resources Science, 2020, 42(3): 499-507.
[1] | Walling D E, Fang D . Recent trends in the suspended sediment loads of the world’s rivers[J]. Global and Planetary Change, 2003,39(1-2):111-126. |
[2] | Li L, Ni J R, Chang F , et al. Global trends in water and sediment fluxes of the world’s large rivers[J]. Science Bulletin, 2020,65(1):62-69. |
[3] | Best J . Anthropogenic stresses on the world’s big rivers[J]. Nature Geoscience, 2019,12(1):7-21. |
[4] | Zhang M, Wang J P, Zhou R J . Attribution analysis of hydrological drought risk under climate change and human activities: A case study on Kuye River Basin in China[J]. Water, 2019, DOI: 10.3390/w11101958. |
[5] | 蒋晓辉, 谷晓伟, 何宏谋 . 窟野河流域煤炭开采对水循环的影响研究[J]. 自然资源学报, 2010,25(2):300-307. |
[ Jiang X H, Gu X W, He H M . The influence of coal mining on water resources in the Kuye River Basin[J]. Journal of Natural Resources, 2010,25(2):300-307.] | |
[6] | 刘二佳, 张晓萍, 张建军 , 等. 1956-2005年窟野河径流变化及人类活动对径流的影响分析[J]. 自然资源学报, 2013,28(7):1159-1168. |
[ Liu E J, Zhang X P, Zhang J J , et al. Variation of annual streamflow and the effect of human activity in the Kuye River during 1956 to 2005[J]. Journal of Natural Resources, 2013,28(7):1159-1168.] | |
[7] | Gao G Y, Fu B J, Zhang J J , et al. Multiscale temporal variability of flow-sediment relationships during the 1950-2014 in the Loess Plateau, China[J]. Journal of Hydrology, 2018,563:609-619. |
[8] | Zhang S Y, Chen D, Li F X , et al. Evaluating spatial variation of suspended sediment rating curves in the middle Yellow River basin, China[J]. Hydrological Processes, 2018,32(11):1616-1624. |
[9] | Sun P C, Wu Y P, Gao J E , et al. Shifts of sediment transport regime caused by ecological restoration in the Middle Yellow River Basin[J]. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2019.134261. |
[10] | 姚文艺, 李长明, 张攀 , 等. 砒砂岩侵蚀机理研究与展望[J]. 人民黄河, 2018,40(6):1-8. |
[ Yao W Y, Li C M, Zhang P , et al. Prospect and research on the erosion mechanism of Pisha sandstone[J]. Yellow River, 2018,40(6):1-8.] | |
[11] | Li H J, Shi C X, Zhang Y S , et al. Using the Budyko hypojournal for detecting and attributing changes in runoff to climate and vegetation change in the soft sandstone area of the middle Yellow River basin, China[J]. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2019.135588. |
[12] | Allen R G, Pereira L S, Raes D , et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements[R]. Rome: FAO Irrigation and Drainage Paper 56, 1998. |
[13] | Mann H B . Nonparametric test against trend[J]. Econometrica, 1945,13(3):245-259. |
[14] | Kendall M G . Rank Correlation Measures[M]. London: Charles Griffin, 1975. |
[15] | Sen P K . Estimates of the regression coefficient based on Kendall’s tau[J]. Publications of the American Statistical Association, 1968,63(324):1379-1389. |
[16] | Pettitt A N . A non-parametric approach to the change-point problem[J]. Journal of the Royal Statistical Society, 1979,28(2):126-135. |
[17] | Lee A F S, Heghinian S M . A shift of the mean level in a sequence of independent normal random variables: A Bayesian approach[J]. Technometrics, 1977,19(4):503-506. |
[18] | 许全喜, 石国钰, 陈泽方 . 长江上游近期水沙变化特点及其趋势分析[J]. 水科学进展, 2004,15(4):420-426. |
[ Xu Q X, Shi G Y, Chen Z F . Analysis of recent changing characteristics and tendency runoff and sediment transport in the upper reach of Yangtze River[J]. Advances in Water Science, 2004,15(4):420-426.] | |
[19] | Xu X Y, Yang D W, Yang H B , et al. Attribution analysis based on the Budyko hypojournal for detecting the dominant cause of runoff decline in Haihe basin[J]. Journal of Hydrology, 2014,510:530-540. |
[20] | 高文永, 高亚军, 徐建华 . 采矿塌陷对窟野河流域水沙的影响[J]. 人民黄河, 2017,39(11):76-80. |
[ Gao W Y, Gao Y J, Xu J H . Influences of mining collapse on water and sediment of Kuye River basin[J]. Yellow River, 2017,39(11):76-80.] | |
[21] | Zhang Q, Zhang Z J, Shi P J , et al. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China[J]. Global and Planetary Change, 2018,160:61-74. |
[22] | Zhang X P, Lin P F, Chen H , et al. Understanding land use and cover change impacts on run-off and sediment load at flood events on the Loess Plateau, China[J]. Hydrological Processes, 2018,32(4):576-589. |
[23] | Liang W, Bai D, Wang F Y , et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau[J]. Water Resources Research, 2015,51(8):6500-6519. |
[24] | Joiner J, Yoshida Y, Anderson M , et al. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales[J]. Remote Sensing of Environment, 2018,219:339-352. |
[25] | Zhao G J, Tian P, Mu X M , et al. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China[J]. Journal of Hydrology, 2014,519:387-398. |
[26] | 郭巧玲, 陈新华, 窦春锋 , 等. 近60年来窟野河全流域年径流变化及其影响因素分析研究[J]. 水土保持学报, 2016,30(3):90-95. |
[ Guo Q L, Chen X H, Dou C F , et al. Study on the variation of annual runoff and influencing factors in Kuye River during the past 60 years[J]. Journal of Soil and Water Conservation, 2016,30(3):90-95.] | |
[27] | Yang H B, Yang D W, Hu Q F . An error analysis of the Budyko hypojournal for assessing the contribution of climate change to runoff[J]. Water Resources Research, 2014,50(12):9620-9629. |
[1] | 曹永强,刘明阳,李元菲,肖春柳. 不同潜在蒸散发估算方法在辽宁省的适用性分析[J]. 资源科学, 2019, 41(10): 1780-1790. |
[2] | 张丹, 梁康, 聂茸, 顾人颖. 基于Budyko假设的流域蒸散发估算及其对气候与下垫面的敏感性分析[J]. 资源科学, 2016, 38(6): 1140-1148. |
[3] | 唐宝琪, 延军平, 王璐璐, 刘永林. 1960-2014年东北地区大雨和暴雨事件的变化特征[J]. 资源科学, 2015, 37(12): 2514-2523. |
[4] | 高鹏, 穆兴民, 田鹏, 王飞, 赵广举. 近60 年黄河中游水沙变化趋势及其影响因素分析[J]. , 2012, 34(6): 1070-1078. |
[5] | 李远平, 马建国, 杨太保. 淠河流域汛期降水集中度和集中期的变化特征[J]. , 2012, 34(3): 418-423. |
[6] | 付永锋, 刘昌明, 刘小莽, 邱新法, 张丹. 基于MODIS数据的中国地面水汽压模拟与分析[J]. , 2012, 34(1): 74-80. |
[7] | 李斌, 李九一, 李丽娟, 梁丽乔, 柳玉梅, 覃驭楚, 曾宏伟. 澜沧江流域潜在蒸散发敏感性分析[J]. , 2011, 33(7): 1256-1263. |
[8] | 李占玲, 徐宗学. 近50 年来黑河流域气温和降水量突变特征分析[J]. , 2011, 33(10): 1877-1882. |
[9] | 冯平, 牛军宜, 张伟. 于桥水库流域年降水的丰枯规律及其补偿特性研究[J]. , 2010, 32(6): 1127-1132. |
[10] | 李晶, 任志远, 张翀. 西北地区1962 年至2000 年降水量变化的时空特征分析[J]. , 2010, 32(12): 2298-2304. |
[11] | 彭骏, 王顺久, 周长艳. 金沙江流域及邻近地区空中水资源的气候特征分析[J]. , 2010, 32(12): 2433-2440. |
[12] | 曹英杰, 刘昌明, 刘小莽, 郑红星. 海河流域潜在蒸散发的气候敏感性分析[J]. , 2009, 31(9): 1470-1476. |
[13] | 王顺久. 长江上游川江段气温、降水及径流变化趋势分析[J]. , 2009, 31(7): 1142-1149. |
[14] | 康淑媛, 柳景峰, 杨明金, 张 勃. 基于Mann-Kendall法的张掖市降水量时空分布规律分析[J]. , 2009, 31(3): 501-508. |
[15] | 蔡焕杰, 刘红英, 王健, 王小军, 翟俊峰, 张鑫. 窟野河季节性断流及其成因分析[J]. , 2008, 30(3): 475-480. |
|