资源科学 ›› 2020, Vol. 42 ›› Issue (1): 96-103.doi: 10.18402/resci.2020.01.10
收稿日期:
2019-12-09
修回日期:
2020-01-08
出版日期:
2020-01-25
发布日期:
2020-01-25
通讯作者:
傅伯杰
作者简介:
王帅,男,教授,主要从事人地系统耦合与可持续发展研究。E-mail: 基金资助:
WANG Shuai1, FU Bojie1,*(), WU Xutong2, WANG Yaping1
Received:
2019-12-09
Revised:
2020-01-08
Online:
2020-01-25
Published:
2020-01-25
Contact:
FU Bojie
摘要:
在全球变化和人类活动驱动下,社会系统与生态系统均处在不断加剧的动态变化中,揭示二者之间的互馈机制是保持和增强系统弹性以及可持续性的科学基础。黄土高原地区是中国人口、资源、环境矛盾最集中的区域之一,也是黄河重要的产水区和绝大部分泥沙的来源区。合理布局黄土高原土地利用格局,协调黄土高原水土保持和黄河下游水资源利用与泥沙控制,是黄土高原地区和黄河流域可持续发展的重大需求。本文立足于国际社会-生态系统耦合研究前沿和可持续发展与生态建设的国家需求,综述了区域社会系统与生态系统的互馈机制和社会-生态系统的耦合模拟的研究进展,总结了黄土高原社会-生态系统的变化过程和驱动机制,认为发展社会-生态系统动态机制分析方法和稳态转换识别方法,建立耦合社会系统与生态系统的土地利用权衡与优化模型,是推动社会-生态系统耦合研究理论与方法创新、为黄土高原的可持续发展提供科学依据的重要途径。
王帅, 傅伯杰, 武旭同, 王亚萍. 黄土高原社会-生态系统变化及其可持续性[J]. 资源科学, 2020, 42(1): 96-103.
WANG Shuai, FU Bojie, WU Xutong, WANG Yaping. Dynamics and sustainability of social-ecological systems in the Loess Plateau[J]. Resources Science, 2020, 42(1): 96-103.
表1
常见社会生态系统分析框架总结"
框架 | 目的 | 组件 | 连接 | 尺度 | 背景 |
---|---|---|---|---|---|
人类生态 系统[ | 发展生态系统管理的跨学科组织概念 | 关键性资源(自然、社会经济和文化资源)和人类社会系统(社会制度、周期和秩序) | 连接表征流向;未关注非线性或随机连接;反馈作用有所涉及 | 强调多尺度,组件所处时空尺度决定了对组件的理解;跨尺度连接有所涉及 | 社会和土地利用的历史状态 |
恢复力[ | 关注社会生态系统动态演化机制与系统稳健性 | 框架未指定组件或子组件 | 用可标度变量表征连接,连接程度影响系统状态;系统本身体现非线性或随机关系、以及反馈作用,但未通过连接表示 | 强调无限尺度,复杂系统在演化适应过程中,组件的相互连接呈现多层次结构,该结构在其形成、发展、重组和更新周期中具有时间无限性;跨尺度连接表述详细 | 系统历史状态 |
生态系统 服务综合 评估[ | 加强生态系统功能、商品和服务研究的可对比性 | 生态系统服务(调节、供给、文化和支持)与人类福祉 | 连接表征生态系统对人类福祉的影响程度;非线性或随机连接有所涉及;关注管理对生态系统结构的反馈 | 强调多尺度,生态系统与其所提供服务的交互作用可发生在单一尺度,也可跨尺度 | 影响价值评估的驱动因子 |
脆弱性[ | 关注人类与环境复杂系统的脆弱性,并为其分析与评估构建概念框架 | 脆弱性(暴露度、敏感性和恢复力)评估组件和背景组件(系统外部人类与环境对系统的影响) | 连接表征组件间的因果关系,用箱体表示组件内部的连接;非线性或随机连接有所涉及;反馈作用表述详细 | 强调多尺度,认为多尺度连接和跨尺度反馈对系统脆弱性产生影响 | 灾害驱动因子;考虑背景与系统内部交互作用 |
人与自然系统耦合[ | 促进范式转换,强调人与自然在空间、组织和时间尺度上的多层次耦合 | 人类与自然两类,具体构成取决于研究对象 | 对系统中存在的多种连接展开详细描述,包括连接间的非线性或随机关系和反馈作用 | 强调多尺度,认为系统中人与自然的耦合以不同速率在嵌套空间中发生;跨尺度连接表述详细 | 人与自然的多层次耦合关系;考虑背景与 系统内部交互作用 |
社会生态 系统[ | 聚焦公共池塘资源,识别影响社会生态系统中自组织结构可持续发展的重要变量 | 资源系统、资源单位、管理系统和行动者,及其相互作用与结果构成系统主体,相关生态系统及社会、经济和政治环境构成背景组件 | 通过制度分析与发展(IAD)框架探索变量之间的连接,连接有正负之分;连接间的非线性或随机关系及反馈作用均有所涉及 | 强调多尺度,认为理解复杂系统的多层嵌套结构和时间周期是识别可持续与否的重要前提;跨尺度连接有所涉及 | 社会、经济、政治和生态状况 |
[1] | Vitousek P M, Mooney H A, Lubchenco J , et al. Human domination of earth’s ecosystems[J]. Science, 1997,277(5325):494-499. |
[2] | Sachs J D . Sustainable development[J]. Science, 2004,304(5671):649-649. |
[3] | Liu J G, Dietz T, Carpenter S R , et al. Complexity of coupled human and natural systems[J]. Science, 2007,317(5844):1513-1516. |
[4] | Levin S, Xepapadeas T, Crépin A-S , et al. Social-ecological systems as complex adaptive systems: Modeling and policy implications[J]. Environment and Development Economics, 2013,18(2):111-132. |
[5] | Glaser M, Krause G, Ratter B , et al. Human/Nature interaction in the anthropocene potential of social-ecological systems analysis[J]. Gaia-Ecological Perspectives for Science and Society, 2008,17(1):77-80. |
[6] | Leslie H M, Basurto X, Nenadovic M , et al. Operationalizing the social-ecological systems framework to assess sustainability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(19):5979-5984. |
[7] | Reyers B, Folke C, Moore M L , et al. Social-ecological systems insights for navigating the dynamics of the anthropocene[J]. Annual Review of Environment and Resources, 2018,43(1):267-289. |
[8] | Folke C, Carpenter S R, Walker B , et al. Resilience thinking: Integrating resilience, adaptability and transformability[J]. Ecology and Society, 2010,15(4):299-305. |
[9] | 黄晓军, 王博, 刘萌萌 , 等. 社会-生态系统恢复力研究进展: 基于CiteSpace的文献计量分析[J]. 生态学报, 2019,39(8):367-377. |
[ Huang X J, Wang B, Liu M M , et al. Research progress on socio-ecosystem resilience: A bibliometric analysis based on CiteSpace[J]. Acta Ecologica Sinica, 2019,39(8):367-377.] | |
[10] | 傅伯杰, 冷疏影, 宋长青 . 新时期地理学的特征与任务[J]. 地理科学, 2015,35(8):939-945. |
[ Fu B J, Leng S Y, Song C Q . The characteristics and tasks of geography in the New Era[J]. Scientia Geographica Sinica, 2015,35(8):939-945.] | |
[11] | Lv Y H, Fu B J, Feng X M , et al. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China[J]. PLoS One, 2012,7(2):e31782. |
[12] | Fu B J, Wang S, Liu Y , et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth and Planetary Sciences, 2017,45(1):223-243. |
[13] | Feng X M, Fu B J, Piao S L , et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016,6(11):1019-1022. |
[14] | Chen Y P, Wang K B, Lin Y S , et al. Balancing green and grain trade[J]. Nature Geoscience, 2015,8(10):739-741. |
[15] | Fischer J, Gardner T A, Bennett E M , et al. Advancing sustainability through mainstreaming a social-ecological systems perspective[J]. Current Opinion in Environmental Sustainability, 2015,14:144-149. |
[16] | Mace G M . Whose conservation?[J]. Science, 2014,345(6204):1558-1560. |
[17] | Liu J G, Mooney H, Hull V , et al. Systems integration for global sustainability[J]. Science, 2015, DOI: 10.1126/science.1258832. |
[18] | Ostrom E . A general framework for analyzing sustainability of social-ecological systems[J]. Science, 2009,325(5939):419-422. |
[19] | Berkes F, Folke C, Colding J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience[M]. Cambridge: Cambridge University Press, 2000. |
[20] | Guerrero A M, Bennett N J, Wilson K A , et al. Achieving the promise of integration in social-ecological research: A review and prospectus[J]. Ecology and Society, 2018, DOI: 10.5751/ES-10232-230338. |
[21] | Biggs R, Carpenter S R, Brock W A . Turning back from the brink: Detecting an impending regime shift in time to avert it[J]. Proceedings of the National academy of Sciences, 2009,106(3):826-831. |
[22] | Cinner J E, Huchery C, MacNeil M A, et al. Bright spots among the world’s coral reefs[J]. Nature, 2016,535(7612):416-419. |
[23] | Kajikawa Y, Tacoa F, Yamaguchi K . Sustainability science: The changing landscape of sustainability research[J]. Sustainability Science, 2014,9(4):431-438. |
[24] | Folke C . Resilience: The emergence of a perspective for social-ecological systems analyses[J]. Global Environmental Change, 2006,16(3):253-267. |
[25] | Walker B, Carpenter S R, Anderies J M , et al. Resilience management in social-ecological systems: A working hypojournal for a participatory approach[J]. Conservation Ecology, 2002,6(1):14-31. |
[26] | McGinnis M D, Ostrom E . Social-ecological system framework: Initial changes and continuing challenges[J]. Ecology and Society, 2014, DOI: 10.5751/es-06387-190230. |
[27] | Simone P, Nicola U, Kathryn L S , et al. Frontiers in socio-environmental research: Components, connections, scale, and context[J]. Ecology and Society, 2018, DOI: 10.5751/ES-10280-230323. |
[28] | Machlis G E, Force J E, Burch W R . The human ecosystem Part I: The human ecosystem as an organizing concept in ecosystem management[J]. Society & Natural Resources, 1997,10(4):347-367. |
[29] | Carpenter S, Walker B, Anderies J M , et al. From metaphor to measurement: Resilience of what to what?[J]. Ecosystems, 2001,4(8):765-781. |
[30] | Gunderson L H, Holling C S. Panarchy: Understanding Transformations in Human and Natural Systems[M]. Washington: Island Press, 2001. |
[31] | Holling C S . Understanding the complexity of economic, ecological, and social systems[J]. Ecosystems, 2001,4(5):390-405. |
[32] | de Groot R S, Wilson M A, Boumans R M J . A typology for the classification, description and valuation of ecosystem functions, goods and services[J]. Ecological Economics, 2002,41(3):393-408. |
[33] | Turner B L, Kasperson R E, Matson P A , et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(14):8074-8079. |
[34] | Liu J G, Dietz T, Carpenter S R , et al. Coupled human and natural systems[J]. Ambio, 2007,36(8):639-649. |
[35] | Ostrom E . A diagnostic approach for going beyond panaceas[J]. Proceedings of the National Academy of Sciences, 2007,104(39):15181-15187. |
[36] | Angeler D G, Allen C R . Quantifying resilience[J]. Journal of Applied Ecology, 2016,53(3):617-624. |
[37] | Walker B H, Meyers J A . Thresholds in ecological and social-ecological systems: A developing database[J]. Ecology and Society, 2004, DOI: 10.5751/ES-00664-090203. |
[38] | Walker B, Hollin C S, Carpenter S R , et al. Resilience, adaptability and transformability in social-ecological systems[J]. Ecology and Society, 2004, DOI: 10.1890/04-0463. |
[39] | Walker B, Salt D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World[M]. Washington: Island Press, 2012. |
[40] | Darnhofer I, Fairweather J, Moller H . Assessing a farm’s sustainability: Insights from resilience thinking[J]. International Journal of Agricultural Sustainability, 2010,8(3):186-198. |
[41] | Carpenter S R, Westley F, Turner M G . Surrogates for resilience of social-ecological systems[J]. Ecosystems, 2005,8:941-944. |
[42] | Homayounfar M, Muneepeerakul R, Anderies J M , et al. Linking resilience and robustness and uncovering their trade-offs in coupled infrastructure systems[J]. Earth System Dynamics, 2018,9(4):1159-1168. |
[43] | Meyer K, Hoyer-Leitzel A, Iams S , et al. Quantifying resilience to recurrent ecosystem disturbances using flow-kick dynamics[J]. Nature Sustainability, 2018,1(11):671-678. |
[44] | Lade S J, Tavoni A, Levin S A , et al. Regime shifts in a social-ecological system[J]. Theoretical Ecology, 2013,6(3):359-372. |
[45] | Walker B, Pearson L, Harris M , et al. Incorporating resilience in the assessment of inclusive wealth: An example from South East Australia[J]. Environmental and Resource Economics, 2010,45(2):183-202. |
[46] | Filatova T, Polhill J G, van Ewijk S, . Regime shifts in coupled socio-environmental systems: Review of modelling challenges and approaches[J]. Environmental Modelling & Software, 2016,75:333-347. |
[47] | Gunderson L H, Cosens B A, Chaffin B C , et al. Regime shifts and panarchies in regional scale social-ecological water systems[J]. Ecology and Society, 2017,22(1):1-31. |
[48] | Biggs R, Peterson G D, Rocha J C . The regime shifts database: A framework for analyzing regime shifts in social-ecological systems[J]. Ecology and Society, 2018, DOI: 10.5751/ES-10264-230309. |
[49] | Rocha J C, Peterson G D, Bodin O , et al. Cascading regime shifts within and across scales[J]. Science, 2018,362(6421):1379-1383. |
[50] | Hull V, Liu J G . Telecoupling: A new frontier for global sustainability[J]. Ecology and Society, 2018, DOI: 10.5751/ES-10494-230441. |
[51] | Rockström J, Steffen W L, Noone K , et al. A safe operating space for humanity[J]. Nature, 2009,461(7263):472-475. |
[52] | Rockström J, Steffen W L, Noone K , et al. Planetary boundaries: Exploring the safe operating space for humanity[J]. Ecology and Society, 2009, DOI: 10.5751/ES-03180-140232. |
[53] | Bodin Ö, Crona B, Thyresson M , et al. Conservation success as a function of good alignment of social and ecological structures and processes[J]. Conservation Biology, 2014,28(5):1371-1379. |
[54] | Bodin Ö, Alexander S M, Baggio J , et al. Improving network approaches to the study of complex social-ecological interdependencies[J]. Nature Sustainability, 2019,2(7):551-559. |
[55] | Chaffin B C, Garmestani A S, Gunderson L H , et al. Transformative environmental governance[J]. Annual Review of Environment and Resources, 2016,41(1):399-423. |
[56] | Ansell C, Gash A . Collaborative governance in theory and practice[J]. Journal of Public Administration Research and Theory, 2008,18(4):543-571. |
[57] | Liu J G, Hull V, Batistella M , et al. Framing sustainability in a telecoupled world[J]. Ecology and Society, 2013,36(23):7870-7885. |
[58] | Ellis E C . Sharing the land between nature and people[J]. Science, 2019,364(6447):1226-1228. |
[59] | Lambin E F, Meyfroidt P . Land use transitions: Socio-ecological feedback versus socio-economic change[J]. Land Use Policy, 2010,27(2):108-118. |
[60] | 傅伯杰 . 新时代自然地理学发展的思考[J]. 地理科学进展, 2018,37(1):1-7. |
[ Fu B J . Thoughts on the recent development of physical geography[J]. Progress in Geography, 2018,37(1):1-7.] | |
[61] | Gao L, Bryan B A . Finding pathways to national-scale land-sector sustainability[J]. Nature, 2017,544(7649):217-222. |
[62] | Kates R W . What kind of a science is sustainability science?[J]. Proceedings of the National academy of Sciences, 2011,108(49):19449-19450. |
[63] | Wang S, Fu B J, Piao S L , et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2015,9(1):38-41. |
[64] | Feng X M, Fu B J, Lu N , et al. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau[J]. Scientific Reports, 2013, DOI: 10.1038/srep02846. |
[65] | Fu B J, Liu Y, Lv Y H , et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China[J]. Ecological Complexity, 2011,8(4):284-293. |
[66] | Feng Q, Zhao W W, Fu B J , et al. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China[J]. Science of the Total Environment, 2017, 607-608:1250-1263. |
[67] | Lv N, Fu B J, Jin T T , et al. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes[J]. Landscape Ecology, 2014,29(10):1697-1708. |
[68] | Hu H T, Fu B J, Lu Y H , et al. SAORES: A spatially explicit assessment and optimization tool for regional ecosystem services[J]. Landscape Ecology, 2014,30(3):547-560. |
[69] | Wu X T, Wang S, Fu B J , et al. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program[J]. Science of the Total Environment, 2019,678:565-573. |
[70] | Wu X T, Wang S, Fu B J , et al. Pathways from payments for ecosystem services program to socioeconomic outcomes[J]. Ecosystem Services, 2019, DOI: 10.1016/j.ecoser.2019.101005. |
[71] | Bryan B A, Gao L, Ye Y Q , et al. China’s response to a national land-system sustainability emergency[J]. Nature, 2018,559(7713):193-204. |
[72] | Yang H B, Yang W, Zhang J D , et al. Revealing pathways from payments for ecosystem services to socioeconomic outcomes[J]. Science Advances, 2018, DOI: 10.1126/sciadv.aao6652. |
[73] | Cao S X . Impact of China’s large-scale ecological restoration program on the environment and society in arid and semiarid areas of China: Achievements, problems, synjournal, and applications[J]. Critical Reviews in Environmental Science and Technology, 2011,41(4):317-335. |
[74] | Wang Y Q, Shao M A, Zhu Y J , et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2011,151(4):437-448. |
[1] | 杨凯悦, 宋永永, 薛东前. 黄土高原乡村聚落用地时空演变与影响因素[J]. 资源科学, 2020, 42(7): 1311-1324. |
[2] | 陈海江, 司伟, 刘泽琦, 李朝柱, 张燕燕. 政府主导型生态补偿的多中心治理——基于农户社会网络的视角[J]. 资源科学, 2020, 42(5): 812-824. |
[3] | 刘丽, 褚力其, 姜志德. 技术认知、风险感知对黄土高原农户水土保持耕作技术采用意愿的影响及代际差异[J]. 资源科学, 2020, 42(4): 763-775. |
[4] | 杨磊, 冯青郁, 陈利顶. 黄土高原水土保持工程措施的生态系统服务[J]. 资源科学, 2020, 42(1): 87-95. |
[5] | 严良,熊伟伟,王小林,王腾. 供需错配下能源替代路径优化[J]. 资源科学, 2019, 41(9): 1655-1664. |
[6] | 常丽博, 骆耀峰, 刘金龙. 哈尼族社会-生态系统对气候变化的脆弱性评估——以云南省红河州哈尼族农村社区为例[J]. 资源科学, 2018, 40(9): 1787-1799. |
[7] | 胡振, 何晶晶, 王玥. 基于IPAT-LMDI扩展模型的日本家庭碳排放因素分析及启示[J]. 资源科学, 2018, 40(9): 1831-1842. |
[8] | 马利群, 秦奋, 孙九林, 王浩, 夏浩铭. 黄土高原昼夜不对称性增温及其对植被NDVI的影响[J]. 资源科学, 2018, 40(8): 1684-1692. |
[9] | 杨智奇, 董金玮, 徐新良, 赵国松, 陈炜, 周岩. 黄土高原森林破碎化的基本特征与时空格局演变[J]. 资源科学, 2018, 40(6): 1246-1255. |
[10] | 贾慧, 陈海, 毛南赵, 聂霞. 高度敏感生态脆弱区景观可持续性评价[J]. 资源科学, 2018, 40(6): 1277-1286. |
[11] | 刘宗明, 吴正倩. 国际油价冲击、中国原油进口“低弹性之谜”与双维非对称动态[J]. 资源科学, 2018, 40(2): 227-236. |
[12] | 李卫, 薛彩霞, 姚顺波, 朱瑞祥. 保护性耕作技术、种植制度与土地生产率——来自黄土高原农户的证据[J]. 资源科学, 2017, 39(7): 1259-1271. |
[13] | 刘宇, 滕佳昆. WATEM/SEDEM框架下的土壤保持效益传输研究[J]. 资源科学, 2017, 39(5): 860-870. |
[14] | 马维兢, 刘斌, 杨德伟, 郭青海. 基于三维生态足迹模型的流域自然资本动态评估——以福建省九龙江流域为例[J]. 资源科学, 2017, 39(5): 871-880. |
[15] | 刘永茂, 李树茁. 农户生计多样性弹性测度研究——以陕西省安康市为例[J]. 资源科学, 2017, 39(4): 766-781. |
|