资源科学 ›› 2019, Vol. 41 ›› Issue (12): 2307-2315.doi: 10.18402/resci.2019.12.14
孔祥斌1, 胡莹洁2, 李月1, 段增强1
收稿日期:
2018-09-27
修回日期:
2019-09-24
出版日期:
2019-12-25
发布日期:
2019-12-25
作者简介:
孔祥斌,男,河北承德人,教授,研究方向为耕地利用与保护,耕地质量评价。E-mail: kxb@cau.edu.cn
基金资助:
KONG Xiangbin1, HU Yingjie2, LI Yue1, DUAN Zengqiang1
Received:
2018-09-27
Revised:
2019-09-24
Online:
2019-12-25
Published:
2019-12-25
摘要:
土壤有机碳既是影响全球气候变化的生态因子,也是影响耕地质量的肥力因子,研究耕地土壤有机碳分布特征及其影响因素对增加耕地碳储量和提升耕地生产能力具有重要指导意义。本文以北京市为研究区,以第二次土壤普查的土壤类型及质地数据、2010年测土配方施肥项目土壤养分调查成果、数字高程模型(DEM)及耕地种植类型分布图为基础数据,分析区域耕地土壤有机碳密度及储量空间分布特征。结果表明:①2010年北京市耕地表层土壤平均有机碳密度为22.51 t/hm 2,碳储量为990.34×10 4 t;②北京市西北部山区以及城市近郊区耕地碳密度较大,各区县中耕地表层土壤平均有机碳密度最大的是门头沟区,达39.93 t/hm 2;③地形、土壤类型、土壤质地及种植类型对耕地土壤有机碳密度均有影响,具随着海拔升高耕地土壤有机碳密度整体呈增加趋势;土壤类型为棕壤、褐土的耕地有机碳密度显著高于其他类型,整体表现出土壤质地越黏重土壤有机碳密度越大的趋势;利用方式为非粮作物的耕地土壤有机碳密度略高于粮食作物;④综合分析表明,在中山、低山区域春玉米土壤碳密度最高,而在丘陵、平原区则是露天菜、设施农业碳密度最高。当前北京市耕地利用调整应综合考虑当地地貌地形、土壤条件以及人为利用因素对耕地表层土壤有机碳的影响,因地制宜提高或保持耕地固碳能力。
孔祥斌, 胡莹洁, 李月, 段增强. 北京市耕地表层土壤有机碳分布及其影响因素[J]. 资源科学, 2019, 41(12): 2307-2315.
KONG Xiangbin, HU Yingjie, LI Yue, DUAN Zengqiang. Distribution and influencing factors of soil organic carbon of cultivated land topsoil in Beijing[J]. Resources Science, 2019, 41(12): 2307-2315.
表1
北京各区县耕地土壤碳密度和碳储量"
各区 | 耕地面积 | 土壤有机碳密度/(t/hm2) | 有机碳储量/104 t | ||
---|---|---|---|---|---|
均值 | 标准差 | 变异系数/% | |||
丰台区 | 6314 | 25.73 | 4.04 | 15.71 | 16.25 |
大兴区 | 66338 | 20.43 | 4.77 | 23.33 | 135.50 |
密云区 | 44316 | 21.27 | 6.68 | 31.41 | 94.26 |
平谷区 | 30170 | 22.28 | 2.77 | 12.43 | 67.22 |
延庆区 | 45649 | 22.62 | 9.94 | 43.96 | 103.25 |
怀柔区 | 27944 | 26.96 | 7.64 | 28.32 | 75.33 |
房山区 | 46100 | 23.30 | 9.28 | 39.84 | 107.43 |
昌平区 | 29411 | 22.99 | 4.85 | 21.11 | 67.63 |
朝阳区 | 8947 | 27.70 | 4.71 | 16.99 | 24.78 |
海淀区 | 9190 | 27.58 | 5.58 | 20.22 | 25.34 |
石景山区 | 19 | 32.93 | 3.36 | 10.19 | 0.06 |
通州区 | 57704 | 23.69 | 4.85 | 20.46 | 136.68 |
门头沟区 | 7362 | 39.93 | 6.44 | 16.12 | 29.39 |
顺义区 | 60589 | 17.70 | 3.18 | 17.94 | 107.23 |
合计 | 440053 | 22.51 | 5.58 | 22.72 | 990.34 |
[1] |
Scharlemann J P W, Tanner E, Hiederer R , et al. Global soil carbon: Understanding and managing the largest terrestrial carbon pool[J]. Carbon Management, 2014,5(1):81-91.
doi: 10.4155/CMT.13.77 |
[2] |
Stockmann U, Adams M A, Crawford J W , et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture Ecosystems & Environment, 2013,164:80-99.
doi: 10.1007/s11427-019-1580-5 pmid: 31883065 |
[3] | Horwath W R, Kuzyakov Y . Chapter three-the potential for soils to mitigate climate change through carbon sequestration[J]. Developments in Soil Science, 2018,35:61-92. |
[4] |
Pries C E H, Castanha C, Porras R C , et al. The whole-soil carbon flux in response to warming[J]. Science, 2017,355(6332):1420-1422.
doi: 10.1126/science.aal1319 pmid: 28280251 |
[5] |
Minasny B, Malone B P, Mcbratney A B , et al. Soil carbon 4 per mille[J]. Geoderma, 2017,292:59-86.
doi: 10.1111/gcb.14844 pmid: 31532049 |
[6] |
Corbeels M, Cardinael R, Naudin K , et al. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa[J]. Soil & Tillage Research, 2019,188:16-26.
doi: 10.1016/j.chemosphere.2019.125614 pmid: 31883478 |
[7] |
Johannes A, Matter A, Schulin R , et al. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?[J]. Geoderma, 2017,302:14-21.
doi: 10.1016/j.geoderma.2017.04.021 |
[8] |
Adhikari K, Owens P R, Libohova Z , et al. Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change[J]. Science of the Total Environment, 2019,667:833-845.
doi: 10.1016/j.scitotenv.2019.02.420 pmid: 30852437 |
[9] |
Davidson E A, Janssens I A . Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006,440(7081):165-173.
doi: 10.1038/nature04514 pmid: 16525463 |
[10] | 李龙, 姚云峰, 秦富仓 . 内蒙古赤峰梯田土壤有机碳含量分布特征及其影响因素[J]. 生态学杂志, 2014,33(11):2930-2935. |
[ Li L, Yao Y F, Qin F C . Distribution and affecting factors of soil organic carbon of terraced fields in Chifeng, Inner Mongolia[J]. Chinese Journal of Ecology, 2014,33(11):2930-2935. ] | |
[11] | 王淑芳, 王效科, 欧阳志云 . 密云水库上游流域土壤有机碳特征及其影响因素[J]. 土壤, 2011,43(4):515-524. |
[ Wang S F, Wang X K, Ouyang Z Y . Characteristics and influencing factors of soil organic carbon in upstream watershed of Miyun Reservoir in North China[J]. Soils, 2011,43(4):515-524. ] | |
[12] |
崔东, 李卫红, 朱成刚 , 等. 伊犁河谷不同土地利用方式下土壤有机碳含量与土壤理化性质相关性分析[J]. 资源科学, 2016,38(7):1239-1245.
doi: 10.18402/resci.2016.07.05 |
[ Cui D, Li W H, Zhu C G , et al. Soil organic carbon content in relation to soil physicochemical properties under different land use types in the Yili Valley[J]. Resources Science, 2016,38(7):1239-1245. ]
doi: 10.18402/resci.2016.07.05 |
|
[13] | 邰继承, 靳振江, 崔立强 , 等. 不同土地利用下湖北江汉平原湿地起源土壤有机碳组分的变化[J]. 水土保持学报, 2011,25(6):124-128. |
[ Tai J C, Jin Z J, Cui L Q , et al. Changes in soil organic carbon fractions with land uses in soils reclaimed from wetlands of Jianghan Plain, Hubei Province[J]. Journal of Soil and Water Conservation, 2011,25(6):124-128. ] | |
[14] | 赵明松, 李德成, 王世航 . 近30年安徽省耕地土壤有机碳变化及影响因素[J]. 土壤学报, 2018,55(3):595-605. |
[ Zhao M S, Li D C, Wang S H . Variation of soil organic carbon in farmland of Anhui and its influencing factors in the 30 years from 1980 to 2010[J]. Acta Pedologica Sinica, 2018,55(3):595-605. ] | |
[15] | 徐尚起, 黄光辉, 李永 , 等. 农业措施对农田土壤碳影响研究进展[J]. 中国农学通报, 2011,27(8):259-264. |
[ Xu S Q, Huang G H, Li Y , et al. The research progress about effects of agricultural measures on soil carbon content[J]. Chinese Agricultural Science Bulletin, 2011,27(8):259-264. ] | |
[16] |
Wang Z M, Wu J G, Madden M , et al. China’s wetlands: Conservation plans and policy impacts[J]. AMBIO, 2012,41(7):782-786.
doi: 10.1007/s13280-012-0280-7 pmid: 22457078 |
[17] |
Cao S X . Impact of China’s large-scale ecological restoration program on the environment and society in arid and semiarid areas of China: Achievements, problems, synjournal, and applications[J]. Critical Reviews in Environmental Science and Technology, 2011,41(4):317-335.
doi: 10.1080/10643380902800034 |
[18] | 严宁珍, 程永毅, 杨剑虹 , 等. 岩溶山地土壤有机碳的分布特征及表层土壤有机碳的影响因素分析: 以重庆市北碚区为例[J]. 中国岩溶, 2013,32(3):292-298. |
[ Yan N Z, Cheng Y Y, Yang J H , et al. Distribution and impact factor of soil organic carbon on topsoil in karst mountain: A case study of Beibei District of Chongqing[J]. Carsologica Sinica, 2013,32(3):292-298. ] | |
[19] | 刘宪锋, 任志远, 林志慧 . 基于GIS的陕西省土壤有机碳估算及其空间差异分析[J]. 资源科学, 2012,34(5):911-918. |
[ Liu X F, Ren Z Y, Lin Z H . Estimation of soil organic carbon in Shaanxi Province and analysis of its spatial difference based on GIS[J]. Resources Science, 2012,34(5):911-918. ] | |
[20] | 李典友, 陈良松, 李军 , 等. 霍山县县域范围内不同空间尺度下农田土壤有机碳变异分析[J]. 地理研究, 2012,31(9):1571-1579. |
[ Li D Y, Chen L S, Li J , et al. Variabilities of soil organic carbon in farmlands at different spatial scales in Huoshan County, Anhui Province[J]. Geographical Research, 2012,31(9):1571-1579. ] | |
[21] |
鲍丽然, 严明书, 贾中民 , 等. 重庆西部表层土壤有机碳储量与密度分布[J]. 物探与化探, 2015,39(1):180-185.
doi: 10.11720/wtyht.2015.1.29 |
[ Bao L R, Yan M S, Jia Z M , et al. The distribution of the surface soil organic carbon storage and density in western Chongqing[J]. Geophysical and Geochemical Exploration, 2015,39(1):180-185. ]
doi: 10.11720/wtyht.2015.1.29 |
|
[22] | 张固成, 傅杨荣, 何玉生 , 等. 海南岛土壤有机碳空间分布特征及储量[J]. 热带地理, 2011,31(6):554-558. |
[ Zhang G C, Fu Y R, He Y S , et al. Distribution and storage of soil organic carbon in Hainan Island[J]. Tropical Geography, 2011,31(6):554-558. ] | |
[23] | 李杨梅, 贡璐, 解丽娜 . 塔里木盆地北缘绿洲不同土地利用方式下土壤有机碳含量及其碳矿化特征[J]. 水土保持通报, 2017,37(3):216-221. |
[ Li Y M, Gong L, Xie L N . Soil organic carbon content and carbon mineralization characteristics under different land use types in northern Tarim Basin[J]. Bulletin of Soil and Water Conservation, 2017,37(3):216-221. ] | |
[24] | 叶新新, 王冰清, 刘少君 , 等. 耕作方式和秸秆还田对砂姜黑土碳库及玉米小麦产量的影响[J]. 农业工程学报, 2019,35(14):112-118. |
[ Ye X X, Wang B Q, Liu S J , et al. Influence of tillage and straw retention on soil carbon pool and maize-wheat yield in Shajiang black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(14):112-118. ] | |
[25] | 江叶枫, 饶磊, 郭熙 , 等. 江西省耕地土壤有机碳空间变异的主控因素研究[J]. 土壤, 2018,50(4):778-786. |
[ Jiang Y F, Rao L, Guo X , et al. Study on main controlling factors of spatial variability of farmland SOC in Jiangxi Province[J]. Soils, 2018,50(4):778-786. ] | |
[26] | 于沙沙, 窦森, 黄健 , 等. 吉林省耕层土壤有机碳储量及影响因素[J]. 农业环境科学学报, 2014,33(10):1973-1980. |
[ Yu S S, Dou S, Huang J , et al. Organic carbon storage of cultivated top soils and its influencing factors in Jilin Province[J]. Journal of Agro-Environment Science, 2014,33(10):1973-1980. ] | |
[27] | 文雅, 邓南荣, 刘晓南 , 等. 粤北山区近25年来耕地表层土壤有机碳变化分析[J]. 生态环境学报, 2011,20(8):1247-1252. |
[ Wen Y, Deng N R, Liu X N , et al. Variations of soil organic carbon of cropland topsoil in mountain area of northern Guangdong over 25 years[J]. Ecology and Environmental Sciences, 2011,20(8):1247-1252. ] | |
[28] | 宋丹, 李双异, 汪景宽 . 下辽河平原区农田土壤有机碳含量时空变异研究[J]. 土壤通报, 2014,45(3):574-578. |
[ Song D, Li S Y, Wang J K . Study of temporal and spatial variation for soil organic carbon in croplands in lower reaches of Liaohe river plain[J]. Chinese Journal of Soil Science, 2014,45(3):574-578. ] | |
[29] | 徐艳, 张凤荣, 郑必昭 , 等. 集约化农区经济发展对耕地土壤有机碳含量变化的影响[J]. 生态环境, 2006,15(1):74-79. |
[ Xu Y, Zhang F R, Zheng B C , et al. Influence of economic development level on topsoil organic carbon over time[J]. Ecology and Environment, 2006,15(1):74-79. ] | |
[30] | 施园园, 赵华甫, 郧文聚 , 等. 北京市耕地多功能空间分异及其社会经济协调模式解释[J]. 资源科学, 2015,37(2):247-257. |
[ Shi Y Y, Zhao H F, Yun W J , et al. Analysis on spatial differentiation of arable land multifunction and socio-economic coordination model in Beijing[J]. Resources Science, 2015,37(2):247-257. ] | |
[31] | 揣小伟, 黄贤金, 赖力 , 等. 基于GIS的土壤有机碳储量核算及其对土地利用变化的响应[J]. 农业工程学报, 2011,27(9):1-6. |
[ Chuai X W, Huang X J, Lai L , et al. Accounting of surface soil carbon storage and response to land use change based on GIS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(9):1-6. ] | |
[32] |
胡莹洁, 李月, 孔祥斌 , 等. 1980-2010年北京市农用地碳储量对土地利用变化的响应[J]. 生态学报, 2018,38(13):4625-4636.
doi: 10.5846/stxb201706291173 |
[ Hu Y J, Li Y, Kong X B , et al. Response of agricultural land carbon storage to land use change in Beijing from 1980 to 2010[J]. Acta Ecologica Sinica, 2018,38(13):4625-4636. ]
doi: 10.5846/stxb201706291173 |
|
[33] | 李亚, 张黎明, 陈瀚阅 , 等. 基于Landsat遥感影像和1: 50000土壤数据库的福州市耕地有机碳动态变化研究[J]. 中国生态农业学报, 2019,27(4):581-590. |
[ Li Y, Zhang L M, Chen H Y , et al. Estimation of changes in soil organic carbon in farmlands in Fuzhou City using Landsat vegetation data and 1: 50000 soil database[J]. Chinese Journal of Eco-Agriculture, 2019,27(4):581-590. ] | |
[34] | 赵永志, 王胜涛 . 北京都市型现代农业发展与耕地土壤资源可持续利用对策探讨[ C]. 广州: 土壤资源持续利用和生态环境安全-中国土壤学会第十一届二次理事扩大会议暨学术会议, 2009. |
[ Zhao Y Z, Wang S T . Discussion on the Countermeasures of Sustainable Use of Arable Land under the Development of Beijing Metropolis Type Modern Agriculture[ C]. Guangzhou: Sustainable Utilization of Soil Resources and Ecological Environment Security-the Second Enlarged Meeting and the 11th Academic Conference of Soil Science Society of China, 2009. ] | |
[35] | 吕贻忠, 李保国 . 土壤学[M]. 北京: 中国农业出版社, 2006. |
[ Lv Y Z, Li B G. Soil Science[M]. Beijing: China Agriculture Press, 2006. ] | |
[36] | 李婧, 张超, 朱德海 , 等. 基于空间技术北京市地貌类型区划研究[J]. 中国农业科技导报, 2007,9(2):126-129. |
[ Li J, Zhang C, Zhu D H , et al. Research on the relief zonal approach of Beijing based on spatial technology[J]. Review of China Agricultural Science and Technology, 2007,9(2):126-129. ] | |
[37] | Mehra P, Baker J, Sojka R E , et al. Chapter five: A review of tillage practices and their potential to impact the soil carbon dynamics in advances in agronomy[J]. Advances in Agronomy, 2018,150:185-230. |
[38] |
Cillis D, Maestrini B, Pezzuolo A , et al. Modeling soil organic carbon and carbon dioxide emissions in different tillage systems supported by precision agriculture technologies under current climatic conditions[J]. Soil and Tillage Research, 2018,183:51-59.
doi: 10.1016/j.still.2018.06.001 |
[39] | 王秀丽, 张凤荣, 朱泰峰 , 等. 北京山区土壤有机碳分布及其影响因素研究[J]. 资源科学, 2013,35(6):1152-1158. |
[ Wang X L, Zhang F R, Zhu T F , et al. The distribution and impact factors of soil organic carbon in mountainous areas of Beijing[J]. Resources Science, 2013,35(6):1152-1158. ] |
[1] | 强文丽, 张翠玲, 刘爱民, 成升魁, 王祥, 李凡. 全球农产品贸易的虚拟耕地资源流动演变及影响因素[J]. 资源科学, 2020, 42(9): 1704-1714. |
[2] | 韩璟, 陈泽秀, 卢新海. 中国海外耕地投资发展的时空格局演变与影响因素[J]. 资源科学, 2020, 42(9): 1715-1727. |
[3] | 张莉, 刘建杰. 清末民国时期新疆玛纳斯河流域耕地格局重建[J]. 资源科学, 2020, 42(7): 1428-1437. |
[4] | 郭贝贝, 方叶林, 周寅康. 农户尺度的耕地撂荒影响因素及空间分异[J]. 资源科学, 2020, 42(4): 696-709. |
[5] | 张佰发, 苗长虹. 黄河流域土地利用时空格局演变及驱动力[J]. 资源科学, 2020, 42(3): 460-473. |
[6] | 曹瑞芬,张安录. 跨区域财政转移制度的耕地保护效应——以新增建设用地使用费为例[J]. 资源科学, 2019, 41(9): 1714-1723. |
[7] | 史芸婷,张彪,高吉喜,佟跃,邵珊珊. 基于城市热岛格局的绿地冷岛需求评估——以北京市朝阳区为例[J]. 资源科学, 2019, 41(8): 1541-1550. |
[8] | 邹秀清,王英,武婷燕,尹玉林,涂小松,徐国良. 江西省农业人口转移对耕地利用效率影响的门槛效应[J]. 资源科学, 2019, 41(8): 1576-1588. |
[9] | 张诩, 乔娟, 沈鑫琪. 养殖废弃物治理经济绩效及其影响因素——基于北京市养殖场(户)视角[J]. 资源科学, 2019, 41(7): 1250-1261. |
[10] | 丁振民, 姚顺波. 陕西省耕地转移对生态系统服务价值的影响[J]. 资源科学, 2019, 41(6): 1070-1081. |
[11] | 张亚丽, 白云丽, 辛良杰. 耕地质量与土地流转行为关系研究[J]. 资源科学, 2019, 41(6): 1102-1110. |
[12] | 吕宁, 吴新芳, 韩霄, 赵亚茹. 游客与居民休闲满意度指数测评与比较——以北京市为例[J]. 资源科学, 2019, 41(5): 967-979. |
[13] | 曹慧, 赵凯. 耕地经营规模对农户亲环境行为的影响[J]. 资源科学, 2019, 41(4): 740-752. |
[14] | 葛畅, 刘慧琳, 聂超甲, 沈强, 张世文. 土壤肥力及其影响因素的尺度效应——以北京市平谷区为例[J]. 资源科学, 2019, 41(4): 753-765. |
[15] | 葛玉娟, 赵宇鸾. 基于道路网络分析技术的耕地细碎化测度模型改进[J]. 资源科学, 2019, 41(4): 766-774. |
|