资源科学 ›› 2019, Vol. 41 ›› Issue (9): 1758-1768.doi: 10.18402/resci.2019.09.16
• 资源生态 • 上一篇
郭一洋1,雷国平1(),张露洋1,赵明朝2,于浩2,戴激光3
收稿日期:
2019-04-24
修回日期:
2019-07-01
出版日期:
2019-09-25
发布日期:
2019-09-25
通讯作者:
雷国平
作者简介:
郭一洋,女,博士生,主要方向为土地利用与规划。E-mail: sunyangrs@163.com
基金资助:
GUO Yiyang1,LEI Guoping1(),ZHANG Luyang1,ZHAO Mingzhao2,YU Hao2,DAI Jiguang3
Received:
2019-04-24
Revised:
2019-07-01
Online:
2019-09-25
Published:
2019-09-25
Contact:
LEI Guoping
摘要:
不透水面是评价城市发展及生态的关键指标,而不透水面提取的方法以四端元模型为主,存在无法有效区分裸土和高反照度的问题。本文以东北老工业代表性城市——沈阳市为研究区,基于Landsat 8多光谱波段(OLI)和热红外波段(TIRS),利用五端元线性光谱混合分解方法对传统的四端元线性光谱混合分解方法进行优化,提取不透水面并对其空间分布进行分析。在四端元线性光谱混合分解方法获取研究区高、低反照度分量基础上,反演地表温度,通过五端元线性光谱混合分解方法获取裸土盖度,利用地表温度和裸土盖度阈值对高、低反照度分量进行优化,得到沈阳市不透水面盖度空间分布。经过精度检验,提取的不透水面均方根误差RMSE=13.14%,相关系数R=0.91,表明本文所用方法可有效提取不透水面。不透水面空间总体分析表明,沈阳市非建设区比例为79.04%,中心老城区高密度区占比较高,城市新扩张区域还未形成合理布局。局部特征分析结果表明,沈阳市东西向发展不对称,南北向的生态环境优于东西向。本文研究结果可为其他城市不透水面提取提供借鉴,为城市规划和发展建设提供科学依据
郭一洋,雷国平,张露洋,赵明朝,于浩,戴激光. 基于OLI/TIRS数据的沈阳市不透水面提取[J]. 资源科学, 2019, 41(9): 1758-1768.
GUO Yiyang,LEI Guoping,ZHANG Luyang,ZHAO Mingzhao,YU Hao,DAI Jiguang. Impervious surface extraction in Shenyang Citybased on OLI/TIRS data[J]. Resources Science, 2019, 41(9): 1758-1768.
表1
沈阳市各区域不透水面分布比例"
区 | 区总面积/km2 | 非建设区比例/% | 低密度区比例/% | 中密度区比例/% | 高密度区比例/% |
---|---|---|---|---|---|
铁西区 | 285.74 | 58.05 | 13.34 | 8.15 | 20.45 |
皇姑区 | 66.17 | 25.21 | 17.16 | 15.15 | 42.53 |
大东区 | 100.10 | 36.17 | 16.91 | 13.24 | 33.70 |
沈河区 | 59.06 | 32.86 | 14.72 | 11.84 | 40.55 |
和平区 | 59.63 | 35.57 | 15.61 | 12.29 | 36.51 |
沈北新区 | 820.96 | 89.60 | 4.98 | 2.25 | 3.09 |
浑南新区 | 802.99 | 84.90 | 7.19 | 3.47 | 4.42 |
于洪区 | 498.98 | 74.81 | 10.27 | 5.82 | 9.09 |
苏家屯区 | 780.72 | 89.17 | 5.20 | 2.17 | 3.23 |
总计 | 3474.36 | 79.04 | 7.91 | 4.41 | 8.56 |
[1] | Arnold L C, James G C . The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258. |
[2] | 乔琨, 朱文泉, 胡德勇 , 等. 北京市不同功能区不透水地表时空变化差异[J]. 地理学报, 2017,72(11):2018-2031. |
[ Qiao K, Zhu W Q, Hu D Y , et al. Examining the distribution and dynamics of impervious surface in different functional zones of Beijing[J]. Acta Geographica Sinica, 2017,72(11):2018-2031.] | |
[3] | 王浩, 卢善龙, 吴炳方 , 等. 不透水面遥感提取及应用研究进展[J]. 地球科学进展, 2013,28(3):327-336. |
[ Wang H, Lu S L, Wu B F , et al. Advances in remote sensing of impervious surfaces extraction and its applications[J]. Advances in Earth Science, 2013,28(3):327-336.] | |
[4] | Brabec E, Schulte S, Richards P L . Impervious surfaces and water quality: A review of current literature and its implications for watershed planning[J]. Journal of Planning Literature, 2002,16(4):499-514. |
[5] | Xian G, Crane M . Assessments of urban growth in the Tampa Bay Watershed using remote sensing data[J]. Remote Sensing of Environment, 2005,97(2):203-215. |
[6] | Zhang L, Weng Q . Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,113:86-96. |
[7] | Shahtahmassebi A R, Song J, Zheng Q , et al. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,46:94-112. |
[8] | Sexton J O, Song X P, Huang C Q , et al. Urban growth of the Washington, D. C. -Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2013,129(2):42-53. |
[9] | Ridd M K . Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities[J]. International Journal of Remote Sensing, 1995,16(12):2165-2185. |
[10] |
岳文泽, 吴次芳 . 基于混合光谱分解的城市不透水面分布估算[J]. 遥感学报, 2007,11(6):914-922.
doi: 10.11834/jrs.200706123 |
[ Yue W Z, Wu C F . Urban impervious surface distribution estimation by spectral mixture analysis[J]. Journal of Remote Sensing, 2007,11(6):914-922.]
doi: 10.11834/jrs.200706123 |
|
[11] | 徐涵秋, 王美雅 . 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016,20(5):1270-1289. |
[ Xu H Q, Wang M Y . Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016,20(5):1270-1289.] | |
[12] | Wu C S, Murray A T . Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(4):493-505. |
[13] | 李苗, 臧淑英, 吴长山 , 等. 哈尔滨市城乡结合部不透水面时空变化及驱动力分析[J]. 地理学报, 2017,72(1):105-115. |
[ Li M, Zang S Y, Wu C S , et al. Spatial and temporal variation and its driving forces of urban impervious surface in urban-rural continuum of Harbin[J]. Acta Geographica Sinica, 2017,72(1):105-115.] | |
[14] | Lu D D, Weng Q S . Use of impervious surface in urban land-use classification[J]. Remote Sensing of Environment, 2006,102(1-2):146-160. |
[15] | Powell R L, Roberts D A, Dennison P E , et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267. |
[16] |
王浩, 吴炳方, 李晓松 , 等. 流域尺度的不透水面遥感提取[J]. 遥感学报, 2011,15(2):388-400.
doi: 10.11834/jrs.20110288 |
[ Wang H, Wu B F, Li X S , et al. Extraction of impervious surface in Hai Basin using remote sensing[J]. Journal of Remote Sensing, 2011,15(2):388-400.]
doi: 10.11834/jrs.20110288 |
|
[17] | Fan F L, Fan W, Weng Q H . Improving urban impervious surface mapping by linear spectral mixture analysis and using spectral indices[J]. Canadian Journal of Remote Sensing, 2015,41(6):577-586. |
[18] |
崔天翔, 宫兆宁, 赵文吉 , 等. 不同端元模型下湿地植被覆盖度的提取方法: 以北京市野鸭湖湿地自然保护区为例[J]. 生态学报, 2013,33(4):1160-1171.
doi: 10.5846/stxb201204270604 |
[ Cui T X, Gong Z N, Zhao W J , et al. Research on estimating wetland vegetation abundance based on spectral mixture analysis with different endmember model: A case study in Wild Duck Lake Wetland, Beijing[J]. Acta Ecologica Sinica, 2013,33(4):1160-1171.]
doi: 10.5846/stxb201204270604 |
|
[19] | 陈晋, 马磊, 陈学泓 , 等. 混合像元分解技术及其进展[J]. 遥感学报, 2016,20(5):1102-1109. |
[ Chen J, Ma L, Chen X H , et al. Research progress of spectral mixture analysis[J]. Journal of Remote Sensing, 2016,20(5):1102-1109.] | |
[20] | 王航, 秦奋 . 遥感影像水体提取研究综述[J]. 测绘科学, 2018,43(5):23-32. |
[ Wang H, Qin F . Summary of the research on water body extraction and application from remote sensing images[J]. Science of Surveying and Mapping, 2018,43(5):23-32.] | |
[21] |
徐涵秋 . 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
doi: 10.3321/j.issn:1007-4619.2005.05.012 |
[ Xu H Q . A study on information extraction of water body with the modified normalized difference water index(MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):589-595.]
doi: 10.3321/j.issn:1007-4619.2005.05.012 |
|
[22] | 唐菲, 徐涵秋 . 城市不透水面与地表温度定量关系的遥感分析[J]. 吉林大学学报(地球科学版), 2013,43(6):1987-1996. |
[ Tang F, Xu H Q . Quantitative relationship between impervious surface and land surface temperature based on remote sensing technology[J]. Journal of Jilin University(Earth Science Edition), 2013,43(6):1987-1996.] | |
[23] | 徐涵秋 . Landsat 8热红外数据定标参数的变化及其对地表温度反演的影响[J]. 遥感学报, 2016,20(2):229-235. |
[ Xu H Q . Change of Landsat 8 TIRS calibration parameters and its effect on land surface temperature retrieval[J]. Journal of Remote Sensing, 2016,20(2):229-235.] | |
[24] | 覃志豪 , Zhang M H, Karnieli A, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001,56(4):456-466. |
[ Qin Z H, Zhang M H, Karnieli A , et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001,56(4):456-466.] | |
[25] | 胡德勇, 乔琨, 王兴玲 , 等. 利用单窗算法反演Landsat 8 TIRS数据地表温度[J]. 武汉大学学报(信息科学版), 2017,42(7):869-876. |
[ Hu D Y, Qiao K, Wang X L , et al. Comparison of three single-window algorithms for retrieving land-surface temperature with Landsat 8 TIRS data[J]. Geomatics and Information Science of Wuhan University, 2017,42(7):869-876.] | |
[26] |
高志宏, 张路, 李新延 , 等. 城市土地利用变化的不透水面覆盖度检测方法[J]. 遥感学报, 2010,14(3):593-606.
doi: 10.3724/SP.J.1011.2010.01138 |
[ Gao Z H, Zhang L, Li X Y , et al. Detection and analysis of urban land use changes through multi-temporal impervious surface mapping[J]. Journal of Remote Sensing, 2010,14(3):593-606.]
doi: 10.3724/SP.J.1011.2010.01138 |
|
[27] | 翟珂, 吴晓青, 秦元伟 , 等. 基于OLI影像的环渤海湾不透水面提取及空间格局分析[J]. 资源科学, 2015,37(10):1920-1928. |
[ Zhai K, Wu X Q, Qin Y W , et al. Extraction and spatial analysis of impervious surfaces in the Bohai Bay region based on OLI imagery[J]. Resources Science, 2015,37(10):1920-1928.] |
[1] | 纪小美, 熊怡清, 张子昂. 地铁在城市旅游交通中的作用及其优化——以南京主城区为例[J]. 资源科学, 2020, 42(5): 946-955. |
[2] | 高秉博, 王劲峰, 胡茂桂, 徐成东, 刘慧兰, 周成虎. 中国陆表自然资源综合观测台站布点优化[J]. 资源科学, 2020, 42(10): 1911-1920. |
[3] | 高阳, 刘悦忻, 钱建利, 郭游, 胡迎山. 基于多源数据综合观测的生态安全格局构建——以江西省万年县为例[J]. 资源科学, 2020, 42(10): 2010-2021. |
[4] | 金凤君, 马丽, 许堞. 黄河流域产业发展对生态环境的胁迫诊断与优化路径识别[J]. 资源科学, 2020, 42(1): 127-136. |
[5] | 陈红光,王中君,王琼雅,买书魁. 基于区间两阶段-部分信息模型的城市水资源优化配置[J]. 资源科学, 2019, 41(8): 1416-1426. |
[6] | 陈红, 史云扬, 柯新利, 郝晋珉, 陈爱琪. 生态与经济协调目标下的郑州市土地利用空间优化配置[J]. 资源科学, 2019, 41(4): 717-728. |
[7] | 王越, 宋戈, 吕冰. 基于多智能体粒子群算法的松嫩平原土地利用格局优化[J]. 资源科学, 2019, 41(4): 729-739. |
[8] | 吕涛, 高剑, 王政. 长三角地区成品油应急储备布局优化研究[J]. 资源科学, 2018, 40(7): 1450-1458. |
[9] | 宿瑞, 王成. 基于网络中心点辐射导向的农村居民点体系重组与优化——以重庆市江津区燕坝村为例[J]. 资源科学, 2018, 40(5): 958-966. |
[10] | 吴溪, 郭斌, 陈忠升, 史文娇. 基于Landsat影像的环胶州湾不透水面格局演变过程[J]. 资源科学, 2018, 40(11): 2260-2269. |
[11] | 褚钰. 考虑用水主体满意度的流域水资源优化配置研究[J]. 资源科学, 2018, 40(1): 117-124. |
[12] | 黄金升, 陈利根, 张耀宇, 赵爱栋. 中国工业地价与产业结构变迁互动效应研究[J]. 资源科学, 2017, 39(4): 585-596. |
[13] | 黄丽丽, 黄振芳. 区间两相模糊多目标模型在种植结构优化中的应用——以辽宁省大连市为例[J]. 资源科学, 2016, 38(11): 2157-2167. |
[14] | 赵爱栋, 许实, 曾薇, 马贤磊, 饶芳萍. 不稳定耕地利用困境:基于粮食安全、农民收入和生态安全间的权衡——以甘肃省景泰县为例[J]. 资源科学, 2016, 38(10): 1883-1892. |
[15] | 沈明, 沈镭, 钟帅, 张超, 孔含笑. 基于生态敏感条件的中国资源型城市去产能空间格局优化[J]. 资源科学, 2016, 38(10): 1962-1974. |
|