资源科学 ›› 2019, Vol. 41 ›› Issue (8): 1526-1540.doi: 10.18402/resci.2019.08.12
李鹏1,2,李文君1,2,封志明1,2,肖池伟1,2,刘怡媛3
收稿日期:
2018-12-01
修回日期:
2019-03-07
出版日期:
2019-08-28
发布日期:
2019-08-21
作者简介:
李鹏,男,江西永新人,博士,副研究员,主要从事资源地理与国土资源遥感研究。E-mail: lip@igsnrr.ac.cn
基金资助:
Peng LI1,2,Wenjun LI1,2,Zhiming FENG1,2,Chiwei XIAO1,2,Yiyuan LIU3
Received:
2018-12-01
Revised:
2019-03-07
Online:
2019-08-28
Published:
2019-08-21
摘要:
活跃火(含植被火)是影响全球陆地生态系统碳循环的重要因素,其发生类型与成因、时空特征及其影响评价是重要研究内容。利用美国国家航空航天局(NASA)FIRMS发布的MODIS C6和VIIRS V1活跃火(Active fire)位置矢量产品,从不同时间尺度(年际、逐月、分旬与小时)与空间尺度(中南半岛/马来群岛)分析了东南亚2000—2017年活跃火的时空特征与动态变化,并比较了两套活跃火产品的数据差异。结果表明:①2000—2017年东南亚MODIS C6活跃火频次累计达4.42×10 6次,年际呈现显著波动变化特征,年际峰值出现时间与全球厄尔尼诺年较为一致。中南半岛是东南亚活跃火主要分布区,其与马来群岛对厄尔尼诺的响应时间有约1年的差异,且马来群岛国家(如印度尼西亚)活跃火对厄尔尼诺现象响应更为敏感。②近18年间,缅甸、老挝、泰国、柬埔寨、越南与印度尼西亚依次是中南半岛与马来群岛活跃火频发国家,其中以缅甸东部与西部、老挝北部、柬埔寨北部、印度尼西亚的苏门答腊岛东南部与加里曼丹岛南部等地分布较为集中。③中南半岛5国活跃火现象高度集中在旱季,其中以2—4月尤为突出,3月最甚。马来群岛3国的活跃火主要集中在6—11月,其中以8—10月最为明显,9月最强。东南亚8国活跃火现象集中分布于特征月份的下、中旬。活跃火观测时段主要集中在格林威治标准时间5—7时与17—19时,6时最多。④2012—2017年东南亚VIIRS V1活跃火频次监测规模约为同期MODIS C6监测结果的5倍,且二者对活跃火频次年际变化监测具有较好一致性。MODIS C6的优势在于活跃火监测时序长,而VIIRS V1对活跃火监测精度更高,应用潜力更大。
李鹏,李文君,封志明,肖池伟,刘怡媛. 基于FIRMS MODIS与VIIRS的东南亚活跃火频次时空动态分析[J]. 资源科学, 2019, 41(8): 1526-1540.
Peng LI,Wenjun LI,Zhiming FENG,Chiwei XIAO,Yiyuan LIU. Spatiotemporal dynamics of active fire frequency in Southeast Asia with the FIRMS Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer (VIIRS) data[J]. Resources Science, 2019, 41(8): 1526-1540.
表1
2000—2017年基于MODIS C6东南亚国家的活跃火频次特征值"
国家 | 累计频数 | 多年平均 | 最大频数 | 最大频数年份 |
---|---|---|---|---|
柬埔寨 | 49.67 | 2.76 | 4.49 | 2013 |
老挝 | 58.89 | 3.27 | 5.87 | 2010 |
缅甸 | 105.67 | 5.87 | 9.59 | 2007 |
泰国 | 49.97 | 2.78 | 5.19 | 2004 |
越南 | 30.49 | 1.69 | 2.59 | 2010 |
文莱 | 0.12 | 0.01 | 0.02 | 2005 |
东帝汶 | 1.51 | 0.08 | 0.19 | 2002 |
印度尼西亚 | 126.96 | 7.05 | 17.85 | 2015 |
马来西亚 | 9.70 | 0.54 | 0.91 | 2005 |
菲律宾 | 9.20 | 0.51 | 0.94 | 2010 |
表2
中南半岛与马来群岛主要国家基于MODIS C6(2000—2017年)与VIIRS V1(2012—2017年)的活跃火频次逐月统计值"
火烧集中月份 | 12月—次年5月 多年平均占比/% | 2—4月多年平均 占比/% | 极大值月份 | 极大值月份占比/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
区域 | 国家 | MODIS | VIIRS | MODIS | VIIRS | MODIS | VIIRS | MODIS | VIIRS | |||
中南 半岛 | 缅甸 | 99.57 | 99.33 | 93.69 | 92.86 | 3 | 3 | 49.70 | 51.22 | |||
老挝 | 99.31 | 99.22 | 91.70 | 90.15 | 3 | 4 | 43.26 | 40.81 | ||||
泰国 | 97.12 | 97.40 | 73.48 | 81.88 | 3 | 3 | 36.53 | 41.66 | ||||
柬埔寨 | 97.74 | 97.73 | 53.17 | 67.82 | 1 | 2 | 35.00 | 36.41 | ||||
越南 | 86.40 | 88.12 | 66.95 | 70.29 | 3 | 3 | 29.78 | 33.29 | ||||
马来群岛 | 菲律宾 | 90.09 | 90.80 | 69.93 | 73.09 | 4 | 4 | 31.04 | 31.24 | |||
6—11月多年 平均占比/% | 8—10月多年 平均占比/% | 极大值月份 | 极大值月份占比/% | |||||||||
MODIS | VIIRS | MODIS | VIIRS | MODIS | VIIRS | MODIS | VIIRS | |||||
马来群岛 | 印度尼西亚 | 85.99 | 86.06 | 68.69 | 68.27 | 9 | 9 | 26.38 | 27.63 | |||
马来西亚 | 58.81 | 47.50 | 38.13 | 23.52 | 8 | 3 | 24.16 | 19.43 | ||||
菲律宾 | 9.91 | 9.20 | 4.71 | 4.52 | 4 | 4 | 31.04 | 31.24 |
表3
中南半岛与马来群岛主要国家基于MODIS C6(2000—2017年)与VIIRS V1(2012—2017年)活跃火频次分旬统计情况"
集中月份全年占比/% | 上旬多年平均占比/% | 中旬多年平均占比/% | 下旬多年平均占比/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
东南亚8国 | MODIS | VIIRS | MODIS | VIIRS | MODIS | VIIRS | MODIS | VIIRS | |||
缅甸 | 99.57 | 99.33 | 6.28 | 5.88 | 34.23 | 38.13 | 58.23 | 55.99 | |||
老挝 | 99.31 | 99.22 | 6.74 | 7.13 | 35.47 | 38.50 | 57.78 | 54.36 | |||
泰国 | 97.12 | 97.40 | 6.28 | 6.27 | 35.49 | 37.57 | 58.23 | 56.16 | |||
柬埔寨 | 97.74 | 97.73 | 6.85 | 7.52 | 35.40 | 36.09 | 57.75 | 56.39 | |||
越南 | 86.40 | 88.12 | 7.36 | 6.45 | 37.51 | 38.90 | 55.13 | 54.65 | |||
印度尼西亚 | 85.99 | 86.06 | 6.89 | 6.46 | 36.62 | 37.16 | 56.49 | 56.39 | |||
马来西亚 | 58.81 | 47.50 | 6.92 | 5.94 | 38.08 | 35.12 | 55.00 | 58.93 | |||
菲律宾 | 90.09 | 90.80 | 7.44 | 6.99 | 37.72 | 37.11 | 54.84 | 55.90 |
[1] | Turetsky M R, Benscoter B, Page S , et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 2015,8(1):11-14. |
[2] | 李纫兰, 缪启龙, 王绍强 , 等. 突发性火灾对南方湿地松人工林土壤碳储量的影响[J]. 资源科学, 2009,31(4):674-680. |
[ Li R L, Miao Q L, Wang S Q , et al. Effect of an unexpected fire on the amount of soil organic carbon in Pinus Elliottii of South China[J]. Resources Science, 2009,31(4):674-680.] | |
[3] | Chan L Y, Chan C Y, Liu H Y , et al. A case study on the biomass burning in Southeast Asia and enhancement of tropospheric ozone over Hong Kong[J]. Geophysical Research Letters, 2000,27(10):1479-1482. |
[4] | Davies D K, Ilavajhala S, Wong M M , et al. Fire information for resource management system: Archiving and distributing MODIS active fire data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(1):72-79. |
[5] | Li P, Feng Z M, Xiao C W , et al. Detecting and mapping annual newly-burned plots (NBP) of swiddening using historical Landsat data in Montane Mainland Southeast Asia (MMSEA) during 1988-2016[J]. Journal of Geographical Sciences, 2018,28(9):1307-1328. |
[6] | Li P, Feng Z M . Extent and area of swidden in montane mainland Southeast Asia: Estimation by multi-step thresholds with Landsat-8 OLI data[J]. Remote Sensing, 2016,8(1):44. |
[7] | Klerk D H . A pragmatic assessment of the usefulness of the Modis (Terra and Aqua) 1-km active fire (MOD14A2 and MYD14A2) products for mapping fires in the fynbos biome[J]. International Journal of Wildland Fire, 2008,17(2):166-178. |
[8] | Fuller D O, Murphy K . The Enso-fire dynamic in insular Southeast Asia[J]. Climatic Change, 2006,74(4):435-455. |
[9] | Bruun T B, Neergaard A D, Lawrence D , et al. Environmental consequences of the demise in swidden cultivation in Southeast Asia: Carbon storage and soil quality[J]. Human Ecology, 2009,37(3):375-388. |
[10] | Gadde B, Bonnet S, Menke C , et al. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines[J]. Environmental Pollution, 2009,157(5):1554-1558. |
[11] | Giglio L, Kendall J D, Tucker C J . Remote sensing of fires with the TRMM VIRS[J]. International Journal of Remote Sensing, 2000,21(1):203-207. |
[12] | Goldammer J G . History of equatorial vegetation fires and fire research in Southeast Asia before the 1997-98 episode: A reconstruction of creeping environmental changes[J]. Mitigation and Adaptation Strategies for Global Change, 2007,12(1):13-32. |
[13] | Giglio L, Descloitres J, Justice C O , et al. An enhanced contextual fire detection algorithm for Modis[J]. Remote Sensing of Environment, 2003,87(2-3):273-282. |
[14] | Pereira J M C . A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(1):217-226. |
[15] | Pu R L, Gong P, Li Z , et al. A dynamic algorithm for wildfire mapping with NOAA/AVHRR data[J]. International Journal of Wildland Fire, 2004,13(3):275-285. |
[16] | 林志强, 路红亚, 罗布次仁 , 等. 基于GIS的西藏地区森林火险风险区划[J]. 资源科学, 2013,35(11):2318-2324. |
[ Lin Z Q, Lu H Y, Luobu C R , et al. Risk assessment of forest fire disasters on the Tibetan plateau based on GIS[J]. Resources Science, 2013,35(11):2318-2324.] | |
[17] | Kasischke E S, Hewson J H, Stocks B , et al. The use of Atsr active fire counts for estimating relative patterns of biomass burning: A study from the boreal forest region[J]. Geophysical Research Letters, 2003,30(18):1-4. |
[18] | Schroeder W, Oliva P, Giglio L , et al. The new Viirs 375M active fire detection data product: Algorithm description and initial assessment[J]. Remote Sensing of Environment, 2014,143:85-96. |
[19] | Gaveau D L, Salim M A, Hergoualc H K , et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires[J]. Scientific Reports, 2014,4:6112. |
[20] | Streets D G, Yarber K F, Woo J H , et al. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions[J]. Global Biogeochemical Cycles, 2003,17(4):1-20. |
[21] | Tansey K, Beston J, Hoscilo A , et al. Relationship between modis fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia[J]. Journal of Geophysical Research: Atmospheres, 2008,113(D23):1-8. |
[22] | Chand S S, Tory K J, Ye H , et al. Projected increase in El Niño-Driven tropical cyclone frequency in the pacific[J]. Nature Climate Change, 2017,7(2):123-127. |
[23] | Sloan S, Locatelli B, Wooster M J , et al. Fire activity in borneo driven by industrial land conversion and drought during El Niño Periods, 1982-2010[J]. Global Environmental Change, 2017,47:95-109. |
[24] | Tipayarom D , Oanh N T K, Thi N. Effects from open rice straw burning emission on air quality in the Bangkok metropolitan region[J]. Science Asia, 2007,33(3):339-345. |
[25] | Vadrevu K P, Lasko K, Giglio L , et al. Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets[J]. Environmental Pollution, 2014,195:245-256. |
[26] | Miettinen J, Shi C H, Liew S C . Fire distribution in peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on peatland fires[J]. Environmental Management, 2017,60(4):747-757. |
[27] | Xiao C W, Li P, Feng Z M . Re-delineating mountainous areas with three topographic parameters in mainland Southeast Asia using aster global digital elevation model data[J]. Journal of Mountain Science, 2018,15(8):1728-1740. |
[28] | Gupta A. The Physical Geography of Southeast Asia[M]. Oxford: Oxford University Press, 2005. |
[29] | 吴良, 钟帅 , Boudmyxay Khampheng, 等. “一带一路”倡议背景下东南亚贫困及减贫开发模式研究[J]. 科技促进发展, 2017,13(6):463-471. |
[ Wu L, Zhong S, Boudmyxay K , et al. Poverty and its reduction paradigm research in Southeast Asia under the backdrop of the belt and road initiative[J]. Science & Technology for Development, 2017,13(6):463-471.] | |
[30] | 唐冲, 陈伟忠, 申玉铭 . 加强东南亚农业合作开发的战略重点与布局研究[J]. 中国农业资源与区划, 2015,36(2):84-93. |
[ Tang C, Chen W Z, Shen Y M . Strengthening agriucultural cooperation in Southeast Asia in the perspective of the strategic focus and layout[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2015,36(2):84-93.] | |
[31] | Field R D , Werf G R V D, Fanin T, et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought[J]. Proceedings of the National Academy of Sciences, 2016,113(33):9204-9209. |
[1] | 王洁, 摆万奇, 田国行. 青藏高原景观生态风险的时空特征[J]. 资源科学, 2020, 42(9): 1739-1749. |
[2] | 安晓宁, 辛岭. 中国农业现代化发展的时空特征与区域非均衡性[J]. 资源科学, 2020, 42(9): 1801-1815. |
[3] | 罗君, 石培基, 张学斌. 黄河上游兰西城市群人口时空特征多维透视[J]. 资源科学, 2020, 42(3): 474-485. |
[4] | 常明, 王西琴, 贾宝珍. 中国粮食作物灌溉用水效率时空特征及驱动因素——以稻谷、小麦、玉米为例[J]. 资源科学, 2019, 41(11): 2032-2042. |
[5] | 童陆亿, 胡守庚. 湘鄂赣三省多级城镇用地扩张时空特征[J]. 资源科学, 2018, 40(6): 1175-1185. |
[6] | 游诗咏, 林仲源, 韩兆洲. 广东省城市旅游效率的时空特征及其增长机制[J]. 资源科学, 2017, 39(8): 1545-1559. |
[7] | 瞿诗进, 胡守庚, 童陆亿, 李全峰. 长江中游经济带城镇建设用地转型的时空特征[J]. 资源科学, 2017, 39(2): 240-251. |
[8] | 刁贝娣, 曾克峰, 苏攀达, 丁镭, 刘超. 中国工业氮氧化物排放的时空分布特征及驱动因素分析[J]. 资源科学, 2016, 38(9): 1768-1779. |
[9] | 何艳秋, 戴小文. 中国农业碳排放驱动因素的时空特征研究[J]. 资源科学, 2016, 38(9): 1780-1790. |
[10] | 万华伟, 高帅, 刘玉平, 臧春鑫, 许时光. 呼伦贝尔生态功能区草地退化的时空特征[J]. 资源科学, 2016, 38(8): 1443-1451. |
[11] | 赵爱栋, 马贤磊, 曲福田, 许实. 基于资源价值显化视角的中国工业用地市场发育水平及其影响因素[J]. 资源科学, 2016, 38(2): 217-227. |
[12] | 焦利民, 肖丰涛, 许刚, 卢延年. 武汉都市区绿地破碎化格局对城市扩张的时空响应[J]. 资源科学, 2015, 37(8): 1650-1660. |
[13] | 胡宗义, 唐李伟, 苏静. 省域碳排放强度的收敛性与动态演进[J]. 资源科学, 2015, 37(1): 142-151. |
[14] | 杨小唤, 程传周, 李月娇, 王静. 近几年来中国耕地占补的空间分异特征[J]. , 2012, 34(9): 1671-1680. |
[15] | 李建国, 李月臣, 刘金萍, 刘丽丽, 濮励杰. 2001 年至2010 年三峡库区重庆段植被活动时空特征及其影响因素[J]. , 2012, 34(8): 1500-1507. |
|