资源科学 ›› 2019, Vol. 41 ›› Issue (7): 1286-1294.doi: 10.18402/resci.2019.07.09
赵苗苗1,3(), 邵蕊1, 李仁强1, 杨吉林2,3, 徐明1,3(
)
收稿日期:
2017-11-07
修回日期:
2019-03-06
出版日期:
2019-07-25
发布日期:
2019-07-25
作者简介:
作者简介:赵苗苗,女,山东郓城人,博士研究生,研究方向为资源环境与生态系统模拟。E-mail:
基金资助:
Miaomiao ZHAO1,3(), Rui SHAO1, Renqiang LI1, Jilin YANG2,3, Ming XU1,3(
)
Received:
2017-11-07
Revised:
2019-03-06
Online:
2019-07-25
Published:
2019-07-25
摘要:
农业生产活动是大气温室气体的主要来源之一,不同作物栽培体系和管理方式都会影响农田温室气体的排放。国内外已有大量关于农业温室气体排放规律和控制机理的研究,但关于土地利用方式转变对温室气体排放规律和影响机制的研究相对较少。本文以中科院千烟洲红壤丘陵综合开发试验站为研究平台,通过对新(刚从旱田转为稻田)老(过去20余年一直为稻田)稻田进行连续4年(2013—2016)观测,分析稻田温室气体排放规律及影响因子。在此基础上预测稻田温室气体排放量的动态变化。研究表明,旱田转变为稻田后,前4年新稻田CH4排放通量显著低于老稻田,但随着耕作年限的延长新稻田的CH4排放速率呈增加趋势,而老稻田的CH4排放速率没有明显变化趋势;耕作年限对CO2和N2O的排放速率影响不显著;新稻田的pH值和土壤有机碳含量低于老稻田。模型模拟结果表明缩短稻田轮作(水-旱轮作)期(小于7年)能够有效降低稻田CH4和总温室气体排放量。该结果表明利用老稻田的CH4排放系数可能会显著高估新稻田的CH4排放量。研究结论可为准确评估土地利用方式变化对农业温室气体排放的影响提供新的视角,同时为区域农业温室气体管理和减排政策的制定提供科学依据。
赵苗苗, 邵蕊, 李仁强, 杨吉林, 徐明. 中国南方旱田转水田后温室气体减排年限预测[J]. 资源科学, 2019, 41(7): 1286-1294.
Miaomiao ZHAO, Rui SHAO, Renqiang LI, Jilin YANG, Ming XU. Simulation of greenhouse gas emission reduction years after the conversion of cropland into paddy field in southern China[J]. Resources Science, 2019, 41(7): 1286-1294.
表1
研究期间土壤温湿度、pH、SOC以及生物量参数"
稻田 | 年份 | 年平均土壤温度/℃ | 年平均土壤湿度/% | 土壤pH | SOC/(g C/kg土壤) | 水稻生物量/(t干物质/年) |
---|---|---|---|---|---|---|
新稻田 | 2013 | 19.7±0.2 | 34.26±0.15 | 4.93±0.01 | 5.77±0.01 | 22.61±2.29 |
2014 | 19.9±0.1 | 33.26±0.34 | 5.01±0.02 | 5.99±0.02 | 20.53±1.38 | |
2015 | 19.9±0.1 | 33.08±0.45 | 5.11±0.03 | 6.03±0.03 | 21.97±2.08 | |
2016 | 20.0±0.2 | 34.01±0.16 | 5.22±0.03 | 6.24±0.04 | 20.81±1.01 | |
老稻田 | 2016 | 19.8±0.2 | 34.52±0.21 | 5.32±0.23 | 9.56±0.31 | 20.45±1.09 |
[1] | IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013. |
[2] | Ball B C, Mctaggart I P, Watson C A.Influence of organic ley-arable management and afforestation in sandy loam to clay loam soils on fluxes of N2O and CH4 in Scotland[J]. Agriculture, Ecosystems & Environment, 2002, 90(3): 305-317. |
[3] | 陈广生, 田汉勤. 土地利用/覆盖变化对陆地生态系统碳循环的影响[J]. 植物生态学报, 2007, 31(2): 189-204. |
[Chen G S, Tian H Q.Land use/cover change effects on carbon cycling in terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 2007, 31(2): 189-204.] | |
[4] | de Godoi S G, Neufeld  D, Ibarr M A, et al. The conversion of grassland to acacia forest as an effective option for net reduction in greenhouses gas emissions[J]. Journal of Environmental Management, 2016, 169: 91-102. |
[5] | Clarke J F, Peterson J T.Effect of regional climate and land use on nocturnal heat island[J]. Bulletin of the American Meteorological Society, 1972, 53(7): 714-721. |
[6] | Houghton R A, Hobbie J E, Melillo J M, et al.Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere[J]. Ecological Monographs, 1983, 53(3): 235-262. |
[7] | 张容娟, 布乃顺, 崔军, 等. 土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响[J]. 生态学报, 2010, 30(24): 6698-6706. |
[Zhang R J, Bu N S, Cui J, et al.Effects of land use on soil organic carbon and soil respiration in soils reclaimed from wetland in the Chongming Island[J]. Acta Ecologica Sinica, 2010, 30(24): 6698-6706.] | |
[8] | Guo J F, Yang Y S, Chen G S, et al.Effects of clear-cutting and slash burning on soil respiration in Chinese fir and evergreen broadleaved forests in mid-subtropical China[J]. Plant and Soil, 2010, 333(1-2): 249-261. |
[9] | Jiang C S, Wang Y S, Hao Q J, et al.Effect of land-use change on CH4 and N2O emissions from freshwater marsh in Northeast China[J]. Atmospheric Environment, 2009, 43(21): 3305-3309. |
[10] | Galbally I, Meyer C P, Wang Y P, et al.Soil-atmosphere exchange of CH4, CO, N2O and NOx and the effects of land-use change in the semiarid Mallee system in Southeastern Australia[J]. Global Change Biology, 2010, 16(9): 2407-2419. |
[11] | Kim D G, Kirschbaum M U F. The effect of land-use change on the net exchange rates of greenhouse gases: A compilation of estimates[J]. Agriculture, Ecosystems and Environment, 2015, 208: 114-126. |
[12] | Livesley S J, Kiese R, Miehle P, et al.Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations[J]. Global Change Biology, 2009, 15(2): 425-440. |
[13] | Weller S, Janz B, Jörg L, et al.Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems[J]. Global Change Biology, 2016, 22(1): 432-448. |
[14] | Salimon C, Davidson E A, Victoria R L, et al.CO2 flux from soil in pastures and forests in southwestern Amazonia[J]. Global Change Biology, 2004, 10(5): 833-843. |
[15] | 宋长春, 王毅勇, 王跃, 等. 人类活动影响下淡水沼泽湿地温室气体排放变化[J]. 地理科学, 2006, 26(1): 82-86. |
[Song C C, Wang Y Y, Wang Y, et al.Character of the greenhouse gas emission in the freshwater mire under human activities[J]. Scientia Geographica Sinica, 2006, 26(1): 82-86.] | |
[16] | Carlisle E A, Steenwerth K L, Smart D R.Effects of land use on soil respiration: Conversion of oak woodlands to vineyards[J]. Journal of Environmental Quality, 2006, 35(4): 1396-1404. |
[17] | 王兴, 赵鑫, 王钰乔, 等. 中国水稻生产的碳足迹分析[J]. 资源科学, 2017, 39(4): 713-722. |
[Wang X, Zhao X, Wang Y Q, et al.Assessment of the carbon footprint of rice production in China[J]. Resources Science, 2017, 39(4): 713-722.] | |
[18] | FAO. FAO Statistical Databases[EB/OL]. (2014-06-08) [2017-11-07]. . |
[19] | McGrath D A, Smith C K, Gholz H L, et al. Effects of land-use change on soil nutrient dynamics in Amazônia[J]. Ecosystems, 2001, 4(7): 625-645. |
[20] | Deng L, Liu G B, Shangguan Z P.Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis[J]. Global Change Biology, 2014, 20(11): 3544-3556. |
[21] | Sheng R, Meng D, Wu M, et al.Effect of agricultural land use change on community composition of bacteria and ammonia oxidizers[J]. Journal of Soils and Sediments, 2013, 13(7): 1246-1256. |
[22] | Chu H, Morimoto S, Fujii T, et al.Soil ammonia-oxidizing bacterial communities in paddy rice fields as affected by upland conversion history[J]. Science Society of America Journal, 2009, 73(6): 1-6. |
[23] | Eusufzai M K, Tokida T, Okada M, et al.Methane emission from rice fields as affected by land use change[J]. Agriculture, Ecosystems & Environment, 2010, 139(4): 742-748. |
[24] | Nishimura S, Akiyama H, Sudo S, et al.Combined emission of CH4 and N2O from a paddy field was reduced by preceding upland crop cultivation[J]. Soil Science and Plant Nutrition, 2011, 57(1): 167-178. |
[25] | Hatala J A, Detto M, Sonnentag O, et al.Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta[J]. Agriculture, Ecosystems & Environment, 2012, 150: 1-18. |
[26] | Kogel-Knabner I, Amelung W, Cao Z, et al.Biogeochemistry of paddy soils[J]. Ceoderma, 2010, 157(1-2): 1-14. |
[27] | 常佳丽. 不同种植年限水稻土中甲烷及氮循环相关微生物群落的研究[D]. 北京: 中国农业大学, 2014. |
[Chang J L.CH4- and N-cycling Related Microbial Communities in Paddy Soils with Different Paddy Ages[D]. Beijing: China Agricultural University, 2014.] | |
[28] | Roth P J, Lehndorff E, Cao Z H, et al.Accumulation of nitrogen and microbial residues during 2000 years of rice and paddy and non-paddy soil development in the Yangtze River Delta, China[J]. Global Change Biology, 2011, 17(11): 3405-3417. |
[29] | Wissing L, Kblbl A, Hausler W, et al.Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations[J]. Soil and Tillage Research, 2013, 126: 60-71. |
[30] | 刘允芬, 于贵瑞, 李家永, 等. 红壤丘陵地区双季稻光合特性初步研究[J]. 资源科学, 2001, 23(6): 49-53. |
[Liu Y F, Yu G R, Li J Y, et al.Characteristics of photosynthesis for double-cropping rice in the red soil hilly area[J]. Resources Science, 2001, 23(6): 49-53.] | |
[31] | Yuan Y, Dai X, Wang H, et al.Effects of land-use conversion from double rice cropping to vegetables on methane and nitrous oxide fluxes in southern China[J]. Plos One, 2016, 11(5): e0155926. |
[32] | Shao R, Xu M, Li R, et al.Effect of land-use legacies and nitrogen fertilization on methane emissions in rice fields in subtropical region[J]. Nutrient Cycling in Agroecosystems, 2017, 107(10): 369-380. |
[33] | Zheng X H, Mei B, Wang Y H, et al.Quantification of N2O fluxes from soil-plant systems may be biased by the applied gas chromatograph methodology[J]. Plant and Soil, 2008, 311(1-2): 211-234. |
[34] | Cai Z C, Xing G X, Yan X Y, et al.Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management[J]. Plant and Soil, 1997, 196(1): 7-14. |
[35] | Xie B, Zheng X, Zhou Z, et al.Effects of nitrogen fertilizer on CH4 emission from rice fields: Multi-site field observations[J]. Plant and Soil, 2010, 326(1-2): 393-401. |
[36] | Yagi K, Minami K.Effect of organic matter application on methane emission from some Japanese paddy fields[J]. Soil Science and Plant Nutrition, 1990, 36(4): 599-610. |
[37] | Watanabe A, Kimura M.Effect of rice straw application on CH4 emission from paddy fields[J]. Soil Science and Plant Nutrition, 1998, 44(4): 507-512. |
[38] | Zhu Z K, Ge T, Liu S L, et al.Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions[J]. Soil Biology and Biochemistry, 2018, 116: 369-377. |
[39] | Jia Z, Cai Z, Xu H, et al.Effect of rice plants on CH4 production, transport oxidation and emission in rice paddy soil[J]. Plant and Soil, 2001, 230(2): 211-221. |
[40] | Zheng X, Zhou Z, Wang Y, et al.Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice field[J]. Global Change Biology, 2006, 12(9): 1717-1732. |
[41] | Perring M P, De Frenne P, Baeten L, et al.Global environmental change effects on ecosystems: The importance of land-use legacies[J]. Global Change Biology, 2016, 22(4): 1361-1371. |
[42] | Dong W, Zhang X, Wang H, et al.Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China[J]. Plos One, 2012, 7(9): e44504. |
[43] | Dong W Y, Zhang X Y, Dai X Q, et al.Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China[J]. Applied Soil Ecology, 2014, 84(3): 140-147. |
[44] | Yu Y, Shen W, Yin Y, et al.Response of soil microbial diversity to land-use conversion of natural forests to plantations in a subtropical mountainous area of southern China[J]. Soil Science and Plant Nutrition, 2012, 58(4): 450-461. |
[45] | Herbst M, Friborg T, Schelde K.Climate an site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland[J]. Biogeosciences, 2013, 10(1): 39-52. |
[46] | Knox S H, Sturtevant C, Matthes J H, et al.Agricultural peatland restoration: Effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta[J]. Global Change Biology, 2015, 21(2): 750-765. |
[1] | 陈海江, 司伟, 刘泽琦, 李朝柱, 张燕燕. 政府主导型生态补偿的多中心治理——基于农户社会网络的视角[J]. 资源科学, 2020, 42(5): 812-824. |
[2] | 马翠梅, 戴尔阜, 刘乙辰, 王亚慧, 王芳. 中国煤炭开采和矿后活动甲烷逃逸排放研究[J]. 资源科学, 2020, 42(2): 311-322. |
[3] | 胡乃娟, 孙晓玲, 许雅婷, 周子阳, 朱利群. 基于Logistic-ISM模型的农户有机肥施用行为影响因素及层次结构分解[J]. 资源科学, 2019, 41(6): 1120-1130. |
[4] | 常清, 王靖, 余卫东, 张宁, 李孟蔚, 李文科, 黄明霞. 河南小麦-玉米轮作系统热量利用率时空分布[J]. 资源科学, 2019, 41(6): 1176-1187. |
[5] | 王珊珊, 张寒, 杨红强. 中国人造板行业的生命周期碳足迹和能源耗用评估[J]. 资源科学, 2019, 41(3): 521-531. |
[6] | 吴宇哲, 许智钇. 休养生息制度背景下的耕地保护转型研究[J]. 资源科学, 2019, 41(1): 9-22. |
[7] | 陈慧, 付光辉, 刘友兆. 江苏省县域农业温室气体排放:时空差异与趋势演进[J]. 资源科学, 2018, 40(5): 1084-1094. |
[8] | 于伟咏, 漆雁斌, 韦锋, 邓鑫. 水旱轮作模式和灌溉方式对西南地区水稻灌溉用水效率的影响[J]. 资源科学, 2017, 39(6): 1127-1136. |
[9] | 刘洋, 郑景云, 葛全胜, 王芳. 低碳发展背景下中国温室气体排放变化及其对全球减排的贡献[J]. 资源科学, 2017, 39(12): 2399-2407. |
[10] | 朱利群, 王春杰, 杨曼君, 李静, 陈利根. 施肥对长江中下游稻田温室气体排放的影响—基于Meta分析[J]. 资源科学, 2017, 39(1): 105-115. |
[11] | 杨璐, 李夏菲, 于书霞, 刘微, 胡荣桂. 湖北省猪粪管理温室气体减排潜力分析[J]. 资源科学, 2016, 38(3): 557-564. |
[12] | 付加锋, 宋飞. 世界主要国家温室气体与二氧化硫的协同减排及启示[J]. , 2012, 34(8): 1439-1444. |
[13] | 彭小龙, 全庞羽, 王雅娜, 夏洵, 严帅, 俞舒迈, 张琼月, 张小洪. 家庭生活用能对二氧化碳排放的影响分析[J]. , 2011, 33(9): 1668-1673. |
[14] | 成升魁, 何露, 焦雯珺, 刘珊, 闵庆文, 杨海龙, 张丹. 传统农业区稻田多个物种共存对病虫草害的生态控制效应——以贵州省从江县为例[J]. , 2011, 33(6): 1032-1037. |
[15] | 方修琦, 李蓓蓓, 杨小明, 殷培红. 德国实现京都减排目标的原因分析[J]. , 2011, 33(3): 588-594. |
|