资源科学 ›› 2018, Vol. 40 ›› Issue (11): 2247-2259.doi: 10.18402/resci.2018.11.11
收稿日期:
2018-04-11
修回日期:
2018-07-26
出版日期:
2018-11-20
发布日期:
2018-11-12
作者简介:
作者简介:张陈俊,男,安徽六安人,博士,讲师,研究方向为水资源经济学。E-mail:
基金资助:
Chenjun ZHANG1(), Jingru XU1, Lina ZHANG2, Qinghua PANG1
Received:
2018-04-11
Revised:
2018-07-26
Online:
2018-11-20
Published:
2018-11-12
摘要:
量化长江经济带水资源消耗时空差异的驱动效应,对双控行动的贯彻实施具有重要意义。本文采用LMDI方法,将用水量的时空差异分解为经济规模效应、产业结构效应和技术进步效应,用水强度的时空差异分解为产业结构效应和技术进步效应。结果显示:技术进步、产业结构调整是抑制用水量上升和促进用水强度下降的主次因素,而经济增长始终推动用水量上升;三次产业用水效率普遍提高和第一产业比重下降,有力促进了用水量和用水强度下降;与重庆相比,其他省份产业用水强度始终较大,尤其是第一、二产业,不利于用水量空间差异的缩小,长江三角洲省份产业结构更加高级缩小了用水量空间差异;与上海相比,其他省份第三产业用水强度始终较大和产业结构低级扩大了用水强度空间差异;水资源消耗时空差异之间存在相互转换的关系。因此,用水量控制应该围绕提高用水效率和优化产业结构,还需要辅助于经济、制度等手段,同时,根据三次产业特征差异而有所侧重;各省份选定参照对象后,依据空间差异驱动效应情况,提出适用的节水对策。
张陈俊, 许静茹, 张丽娜, 庞庆华. 长江经济带水资源消耗时空差异驱动效应研究[J]. 资源科学, 2018, 40(11): 2247-2259.
Chenjun ZHANG, Jingru XU, Lina ZHANG, Qinghua PANG. Driving effect of spatial-temporal difference in water resource consumption in the Yangtze River Economic Zone[J]. Resources Science, 2018, 40(11): 2247-2259.
Table 1
Factor decomposition of spatial difference of water consumption in the Yangtze River Economic Zone in 2000 and 2015 (亿m3)"
组别 | 经济规模效应 | 产业结构效应 | 技术进步效应 | 总效应 |
---|---|---|---|---|
上海-重庆 | 75.75→49.35 | -31.59→-62.60 | 7.89→38.35 | 52.05→25.10 |
江苏-重庆 | 287.37→342.50 | -13.99→-25.75 | 115.90→177.85 | 389.27→494.60 |
浙江-重庆 | 136.70→112.57 | -17.97→-14.97 | 26.10→5.10 | 144.82→102.70 |
安徽-重庆 | 48.61→41.18 | 19.81→36.61 | 51.93→128.12 | 120.36→205.90 |
江西-重庆 | 12.72→-11.95 | 19.67→44.75 | 128.92→132.90 | 161.31→165.70 |
湖北-重庆 | 90.72→78.71 | 8.23→25.40 | 115.32→118.59 | 214.27→222.70 |
湖南-重庆 | 98.15→80.58 | 21.12→38.27 | 140.36→130.85 | 259.63→249.70 |
四川-重庆 | 88.49→91.58 | 17.53→39.32 | 46.19→51.60 | 152.20→182.50 |
贵州-重庆 | -37.33→-63.10 | 11.46→24.39 | 53.71→57.62 | 27.83→18.90 |
云南-重庆 | 10.22→-23.83 | 13.35→41.82 | 67.21→51.91 | 90.78→69.90 |
Table 2
The industrial differences of factor effect of spatial difference of water consumption in the Yangtze River Economic Zone in 2000 and 2015 (亿m3)"
组别 | 产业结构效应 | 技术进步效应 | |||||
---|---|---|---|---|---|---|---|
第一产业 | 第二产业 | 第三产业 | 第一产业 | 第二产业 | 第三产业 | ||
上海-重庆 | -38.68→-54.88 | 4.06→-21.25 | 3.03→13.53 | 18.91→32.45 | 3.45→27.14 | -14.47→-21.24 | |
江苏-重庆 | -23.92→-23.26 | 13.56→-8.05 | -3.63→5.56 | 123.29→127.22 | -2.07→69.25 | -5.32→-18.61 | |
浙江-重庆 | -23.90→-17.03 | 8.49→-7.56 | -2.56→9.62 | 59.20→29.89 | -26.91→-11.73 | -6.19→-13.06 | |
安徽-重庆 | 25.95→41.12 | -4.81→-7.90 | -1.33→3.38 | 50.41→71.39 | 3.12→53.67 | -1.60→3.06 | |
江西-重庆 | 26.77→48.08 | -6.79→-2.61 | -0.31→-0.72 | 100.36→86.31 | 25.19→35.58 | 3.37→11.01 | |
湖北-重庆 | 10.77→28.53 | -2.14→-10.62 | -0.41→7.49 | 89.86→68.49 | 23.24→43.54 | 2.23→6.56 | |
湖南-重庆 | 27.04→43.81 | -5.82→-14.02 | -0.10→8.48 | 121.10→85.84 | 9.23→44.88 | 10.03→0.13 | |
四川-重庆 | 23.99→41.17 | -5.43→-4.85 | -1.03→3.00 | 44.31→44.62 | 1.45→1.06 | 0.43→5.92 | |
贵州-重庆 | 16.02→28.06 | -2.42→-10.20 | -2.14→6.54 | 33.21→28.73 | 8.24→24.52 | 12.25→4.36 | |
云南-重庆 | 15.57→44.00 | -0.52→-6.41 | -1.70→4.23 | 71.67→47.74 | -8.80→3.22 | 4.34→0.94 |
Table 3
Factor decomposition of spatial difference of water intensity in the Yangtze River Economic Zone in 2000 and 2015 (m3/万元)"
组别 | 产业结构效应 | 技术进步效应 | 总效应 |
---|---|---|---|
江苏-上海 | 250.97→73.88 | 42.82→-2.90 | 293.79→70.98 |
浙江-上海 | 172.71→40.90 | -72.32→-30.03 | 100.39→10.87 |
安徽-上海 | 366.97→129.13 | 14.71→8.97 | 381.68→138.10 |
江西-上海 | 556.88→165.11 | 302.50→13.88 | 859.38→178.99 |
湖北-上海 | 359.65→104.00 | 176.44→5.77 | 536.09→109.77 |
湖南-上海 | 472.95→124.10 | 189.55→1.63 | 662.50→125.74 |
重庆-上海 | 115.96→42.19 | -28.60→-25.62 | 87.36→16.58 |
四川-上海 | 303.46→96.63 | 0.24→-26.32 | 303.70→70.31 |
贵州-上海 | 405.70→121.94 | 184.30→2.81 | 589.99→124.75 |
云南-上海 | 444.39→138.11 | 59.91→-27.77 | 504.30→110.33 |
Table 4
The industrial differences of factor effect of spatial difference of water intensity in the Yangtze River Economic Zone in 2000 and 2015 (m3/万元)"
组别 | 产业结构效应 | 技术进步效应 | |||||
---|---|---|---|---|---|---|---|
第一产业 | 第二产业 | 第三产业 | 第一产业 | 第二产业 | 第三产业 | ||
江苏-上海 | 246.55→63.92 | 18.89→15.35 | -14.48→-5.39 | 26.98→-11.54 | -17.25→3.59 | 33.09→5.05 | |
浙江-上海 | 168.82→38.44 | 17.13→6.56 | -13.24→-4.10 | -3.50→-16.51 | -96.37→-20.86 | 27.56→7.34 | |
安徽-上海 | 415.92→122.70 | -35.55→14.46 | -13.40→-8.02 | -30.00→-24.84 | 3.86→15.86 | 40.86→17.95 | |
江西-上海 | 625.59→159.58 | -55.59→17.39 | -13.12→-11.86 | 105.10→-21.18 | 127.88→8.79 | 69.52→26.27 | |
湖北-上海 | 397.27→100.16 | -25.29→10.90 | -12.33→-7.06 | 35.75→-22.69 | 81.01→7.02 | 59.67→21.45 | |
湖南-上海 | 525.05→121.49 | -38.14→8.21 | -13.96→-5.59 | 70.60→-23.27 | 26.98→8.47 | 91.97→16.43 | |
重庆-上海 | 139.79→37.43 | -13.18→13.66 | -10.66→-8.89 | -68.36→-22.13 | -11.19→-17.45 | 50.95→13.96 | |
四川-上海 | 350.79→95.57 | -34.32→9.84 | -13.01→-8.78 | -46.09→-29.66 | -4.76→-16.01 | 51.09→19.35 | |
贵州-上海 | 467.93→123.27 | -34.32→3.91 | -27.91→-5.25 | -12.70→-31.78 | 52.79→10.40 | 144.21→24.18 | |
云南-上海 | 476.07→138.55 | -13.74→6.29 | -17.93→-6.73 | 47.73→-31.46 | -59.91→-13.17 | 72.09→16.85 |
[29] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2001-2016. |
[National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2001- 2016. ] | |
[30] | 中华人民共和国水利部. 中国水资源公报[M]. 北京: 中国水利水电出版社, 2000-2015. |
[The Ministry of Water Resources of the People's Republic of China. China Water Resources Bulletin [M]. Beijing: China Water & Power Press, 2000-2015. ] | |
[31] | 马海良, 徐佳, 王普查. 中国城镇化进程中的水资源利用研究[J]. 资源科学, 2014, 36(2): 334-341. |
[Ma H L, Xu J, Wang P C.Water resource utilization and China's urbanization[J]. Resources Science, 2014, 36(2): 334-341. ] | |
[32] | 贾绍凤. 工业用水零增长的条件分析-发达国家的经验[J]. 地理科学进展, 2001, 20(1): 51-59. |
[Jia S F.The linkage between industrial water use decrease and industrial structure upgrade-experience of developed countries[J]. Progress in Geography, 2001, 20(1): 51-59. ] | |
[1] | 本书编写组. 《国务院关于实行最严格水资源管理制度的意见》辅导读本[M]. 北京: 中国水利水电出版社, 2012. |
[Compiling Group.Opinions of the State Council on the Implementation of the Strictest Water Resources Management System[M]. Beijing: China Water & Power Press, 2012. ] | |
[2] | 贾绍凤, 张士锋, 夏军, 等. 经济结构调整的节水效应[J]. 水利学报, 2004, (3): 111-116. |
[Jia S F, Zhang S F, Xia J, et al. Effect of economic structure adjustment on water saving[J]. Journal of Hydraulic Engineering, 2004, (3): 111-116. ] | |
[3] | 陈东景. 中国工业水资源消耗强度变化的结构份额和效率份额研究[J]. 中国人口·资源与环境, 2008, 18(3): 211-214. |
[Chen D J.Structure share and efficiency share of industrial water consumption intensity change in China[J]. China Population, Resources and Environment, 2008, 13(3): 211-214. ] | |
[4] | 刘翀, 柏明国. 安徽省工业行业用水消耗变化分析-基于LMDI分解法[J]. 资源科学, 2012, 34(12): 2299-2305. |
[Liu C, Bai M G.Change in industrial water use in Anhui province based on LMDI[J]. Resources Science, 2012, 34(12): 2299-2305. ] | |
[5] | 张礼兵, 徐勇俊, 金菊良, 等. 安徽省工业用水量变化影响因素分析[J]. 水利学报, 2014, 45(7): 837-843. |
[Zhang L B, Xu Y J, Jin J L, et al. Analysis of influence factors of regional industry water use in Anhui province[J]. Journal of Hydraulic Engineering, 2014, 45(7): 837-843. ] | |
[6] | 秦昌波, 葛察忠, 贾仰文, 等. 陕西省生产用水变动的驱动机制分析[J]. 中国人口·资源与环境, 2015, 25(5): 131-136. |
[Qin C B, Ge C Z, Jia Y W, et al. Driving mechanism analysis for productive water consumption changes in Shaanxi province[J]. China Population, Resources and Environment, 2015, 25(5): 131-136. ] | |
[7] | 孙才志, 谢巍. 中国产业用水变化驱动效应测度及空间分异[J]. 经济地理, 2011, 31(4): 666-672. |
[Sun C Z, Xie W.Measurement of the driving effects on industrial water utilization change and its spatial difference[J]. Economic Geography, 2011, 31(4): 666-672. ] | |
[8] | 佟金萍, 马剑锋, 刘高峰. 基于完全分解模型的中国万元GDP用水量变动及因素分析[J]. 资源科学, 2011, 33(10): 1870-1876. |
[Tong J P, Ma J F, Liu G F.Agriculture water use efficiency and technical progress in China based on agriculture Panel Data[J]. Resources Science, 2011, 33(10): 1870-1876. ] | |
[9] | Xu Y J, Huang K, Yu Y J, et al. Changes in water footprint of crop production in Beijing from 1978 to 2012: a logarithmic mean divisia index decomposition analysis[J]. Journal of Cleaner Production, 2015, 37(1): 180-187. |
[10] | 韩琴, 孙才志, 邹玮. 1998-2012年中国省际灰水足迹效率测度与驱动模式分析[J]. 资源科学, 2016, 38(6): 1179-1191. |
[Han Q, Sun C Z, Zou W.Grey water footprint efficiency measure and its driving pattern analysis on provincial scale in China from 1998 to 2012[J]. Resources Science, 2016, 36(6): 1179-1191. ] | |
[11] | 张陈俊, 章恒全, 龚雅云. 中国结构升级、技术进步与水资源消耗-基于改进的LMDI方法[J]. 资源科学, 2014, 36(10): 1993-2002. |
[Zhang C J, Zhang H Q, Gong Y Y.Structural upgrading, technical progress and water resource consumption based on a refined LMDI method[J]. Resources Science, 2014, 36(10): 1993-2002. ] | |
[12] | 陈东景. 我国工农业水资源使用强度变动的区域因素分解与差异分析[J]. 自然资源学报, 2012, 27(2): 332-343. |
[Chen D J.Regional factor decompositions and difference of the change in agriculture and industrial water intensity in China[J]. Journal of Natural Resources, 2012, 27(2): 332-343. ] | |
[13] | 张陈俊, 章恒全, 陈其勇, 等. 中国用水量变化的影响因素分析-基于LMDI方法[J]. 资源科学, 2016, 38(7): 1308-1322. |
[Zhang C J, Zhang H Q, Chen Q Y, et al. Factors influencing water use change based on LMDI methods[J]. Resources Science, 2016, 38(7): 1308-1322. ] | |
[14] | Ang B W, Zhang F Q.Inter-regional comparisons of energy-related CO2 using the decomposition technique[J]. Energy, 1999, 24(4): 297-305. |
[15] | Sun J W.Is CO2 emission intensity comparable?[J]. Energy Policy, 2000, 28(15): 1081-1084. |
[16] | Sun J W.An analysis of the difference in CO2 emission intensity between Finland and Sweden[J]. Energy, 2000, 25(11): 1139-1146. |
[17] | Lee S, Scott M, Unander F.International comparisons of sectoral Carbon Dioxide emissions using a cross-country decomposition technique[J]. The Energy Journal, 2001, 22(2): 35-75. |
[18] | Zhang F Q, Ang B W.Methodological issues in cross-country/region decomposition of energy and environment indicators[J]. Energy Economics, 2001, 23(2): 179-190. |
[19] | Lee K, Oh W.Analysis of CO2 emissions in APEC countries: a time-series and a cross-sectional decomposition using the Log Mean Divisia method[J]. Energy Policy, 2006, 34(17): 2779-2787. |
[20] | Gingrich S, Kušková P, Steinberger J K.Long-term changes in CO2 emissions in Austria and Czechoslovakia-identifying the drivers of environmental pressures[J]. Energy Policy, 2011, 39(2): 535-543. |
[21] | Ang B W, Xu X Y, Su B.Multi-country comparisons of energy performance: the index decomposition analysis approach[J]. Energy Economics, 2015, 47: 68-76. |
[22] | Ang B W, Su B, Wang H.A spatial-temporal decomposition approach to performance assessment in energy and emissions[J]. Energy Economics, 2016, 60: 112-121. |
[23] | Li A, Hu M, Wang M, et al. Energy consumption and CO2 emissions in Eastern and Central China: a temporal and a cross-regional decomposition analysis[J]. Technological Forecasting and Social Change, 2016, 103: 284-297. |
[24] | 张陈俊, 董娟娟, 林琳, 等. 区域水资源消耗差异的影响因素分析-LMDI模型的新应用[J]. 水利经济, 2017, 35(6): 71-75. |
[Zhang C J, Dong J J, Lin L, et al. Influence factors for differences in regional water use based on LMDI method[J]. Journal of Economics of Water Resources, 2017, 35(6): 71-75. ] | |
[25] | 张陈俊, 赵存学, 林琳, 等. 长江三角洲地区用水量时空差异的驱动效应研究[J]. 资源科学, 2018, 40(1): 89-103. |
[Zhang C J, Zhao C X, Lin L, et al. Driving effect of spatial-temporal differences in water consumption in the Yangtze River[J]. Resources Science, 2018, 40(1): 89-103. ] | |
[26] | 汪克亮, 刘悦, 史利娟, 等. 长江经济带工业绿色水资源效率的时空分异与影响因素-基于EBM-Tobit模型的两阶段分析[J]. 资源科学, 2017, 39(8): 1522-1534. |
[Wang K L, Liu Y, Shi L J, et al. Yangtze River Economic Zone spatial and temporal disparities in industrial green water resource efficiency and influencing factors based on two-step analysis of EBM-Tobit Model[J]. Resources Science, 2017, 39(8): 1522-1534. ] | |
[27] | Ang B W.Decomposition analysis for policymaking in energy: which is the preferred method?[J]. Energy Policy, 2004, 32(9): 1131-1139. |
[28] | Ang B W.The LMDI approach to decomposition analysis: a practical guide[J]. Energy Policy, 2005, 33(7): 867-871. |
[1] | 张帆, 邓宏兵, 彭永樟. 长江经济带经济集聚对工业废水排放影响的空间溢出效应与门槛特征[J]. 资源科学, 2021, 43(1): 57-68. |
[2] | 张立新, 毕旭, 黄志基. 经济转型背景下城市工业用地利用效率——以长江经济带城市为例[J]. 资源科学, 2020, 42(9): 1728-1738. |
[3] | 陈明华, 刘文斐, 王山, 刘玉鑫. 长江经济带城市生态效率的空间格局及演进趋势[J]. 资源科学, 2020, 42(6): 1087-1098. |
[4] | 王圣云, 韩亚杰, 任慧敏, 李晶. 中国省域生态福利绩效评估及其驱动效应分解[J]. 资源科学, 2020, 42(5): 840-855. |
[5] | 王若梅,马海良,王锦. 基于水-土要素匹配视角的农业碳排放时空分异及影响因素——以长江经济带为例[J]. 资源科学, 2019, 41(8): 1450-1461. |
[6] | 张梅, 黄贤金, 揣小伟, 朱振宇, 汪煜. 胡焕庸线两侧城镇建设用地变化及其碳排放差异[J]. 资源科学, 2019, 41(7): 1262-1273. |
[7] | 张普伟, 贾广社, 何长全, MACKHAPHONH Nikhaphone. 中国建筑业碳生产率变化驱动因素[J]. 资源科学, 2019, 41(7): 1274-1285. |
[8] | 王泽宇, 徐静, 王焱熙. 中国海洋资源消耗强度因素分解与时空差异分析[J]. 资源科学, 2019, 41(2): 301-312. |
[9] | 蔡冰冰,赵威,李政旸,杨慧. 长江经济带外向型经济空间溢出效应[J]. 资源科学, 2019, 41(10): 1871-1885. |
[10] | 胡振, 何晶晶, 王玥. 基于IPAT-LMDI扩展模型的日本家庭碳排放因素分析及启示[J]. 资源科学, 2018, 40(9): 1831-1842. |
[11] | 吴春涛, 李隆杰, 何小禾, 王姣娥. 长江经济带旅游景区空间格局及演变[J]. 资源科学, 2018, 40(6): 1196-1208. |
[12] | 李晨, 丛睿, 邵桂兰. 基于MRIO模型与LMDI方法的中国水产品贸易隐含碳排放转移研究[J]. 资源科学, 2018, 40(5): 1063-1072. |
[13] | 陈慧, 付光辉, 刘友兆. 江苏省县域农业温室气体排放:时空差异与趋势演进[J]. 资源科学, 2018, 40(5): 1084-1094. |
[14] | 王宪恩, 段志远, 王培博, 宋俊年, 王硕, 段海燕. 1990—2014年典型国家技术变革与结构调整的碳排放驱动效应测度[J]. 资源科学, 2018, 40(11): 2317-2327. |
[15] | 杨奎, 文琦, 钟太洋. 长江经济带城市土地利用效率评价[J]. 资源科学, 2018, 40(10): 2048-2059. |
|