资源科学 ›› 2018, Vol. 40 ›› Issue (8): 1583-1594.doi: 10.18402/resci.2018.08.09

• • 上一篇    下一篇

黑龙江省种粮大户的技术效率及其影响因素

朱丽娟1(), 王志伟2   

  1. 1. 河南财经政法大学农业经济系,郑州 450046
    2. 审计署审计科研所,北京 100086
  • 收稿日期:2017-10-31 修回日期:2018-05-02 出版日期:2018-08-25 发布日期:2018-08-10
  • 作者简介:

    作者简介:朱丽娟,女,河南许昌人,博士,副教授,主要从事农业经济理论与政策研究。E-mail:lijuanz22@126.com

  • 基金资助:
    国家自然科学基金项目(71403046);河南省哲学社会科学规划项目(2017BJJ006);河南省高等学校哲学社会科学应用研究重大项目(2018-YYZD-01)

Analysis on technical efficiency and influencing factors of large-scale grain-production farmers in Heilongjiang Province

Lijuan ZHU1(), Zhiwei WANG2   

  1. 1. Department of Agricultural Economics of Henan University of Economics and Law, Zhengzhou 450046, China
    2. Audit Research Institute of National Audit Office, Beijing 100086, China
  • Received:2017-10-31 Revised:2018-05-02 Online:2018-08-25 Published:2018-08-10

摘要:

种粮大户是中国粮食生产的重要主体之一,在资源刚性约束和生产成本上升的背景下,提高种粮大户的技术效率才是保障中国粮食安全和实现农民增收的根本出路。本文依据黑龙江省674个种粮大户调查数据,运用SBM超效率DEA模型实证考察种粮大户的技术效率及其分布、效率分解以及松弛变量情况,运用Tobit回归模型进一步对技术效率的影响因素进行分析。研究结论显示:种粮大户的平均综合技术效率、纯技术效率及规模效率分别为0.545、0.635和0.871,综合技术效率不高,主要原因是纯技术效率较低;耕地经营规模与综合技术效率之间呈“U”型曲线关系;绝大多数种粮大户在投入要素方面存在冗余,改进程度由高到低依次为地租、流动成本、固定成本和人工费用;大户年龄、总耕地面积、家庭务农人数、土地块数、最大地块面积、旱地比例、地头农田水利设施状况、灌溉方式、土地流转合同期限和是否有正规贷款等因素对种粮大户技术效率具有显著影响。

关键词: 技术效率, 经营规模, 种粮大户, 影响因素, 黑龙江省

Abstract:

Large-scale farmers are the important contributors of grain production in China. Under the background of rigid resource constraints and rising production costs, improving the technical efficiency of large-scale grain-production farmers is the fundamental way to guarantee the food security and increase the peasant's income of our country. Based on the survey data of 674 large-scale grain-production farmers in Heilongjiang Province, and using the SBM super efficiency DEA model, this study empirically examined the technical efficiency, the distribution of efficiency, the decomposition of efficiency and the slack variables of input. Furthermore, this paper analyzed the main factors influencing the technical efficiency by using the Tobit regression mode. The conclusions are listed as: Firstly, the average comprehensive technical efficiency, pure technical efficiency and scale efficiency are 0.545, 0.635 and 0.871 respectively. The average comprehensive technical efficiency is not high, and the main reason is the low pure technical efficiency. Secondly, the land management scale has a U-shaped curve relationship with the comprehensive technical efficiency, the same relationship as pure technical efficiency. Thirdly, the vast majority of large-scale grain-production farmers have redundancy in the input factors, and the improvement degree of input factors from high to low is land rent, flowing cost, fixed cost and labor cost. Finally, the factors such as the age, total cultivated land, the number of farm population, the number of soil blocks, the largest plot area, the proportion of farmland, the state of irrigation facilities, the way to irrigate, the term of land circulation contract and the availability of formal loans have significant impacts on the technical efficiency of large grain farmers.

Key words: technical efficiency, management scale, large-scale grain-production farmers, influencing factors, Heilongjiang Province