资源科学 ›› 2018, Vol. 40 ›› Issue (7): 1397-1406.doi: 10.18402/resci.2018.07.08
李珊(), 李启权, 王昌全, 蒋欣烨, 罗丽婷, 方红艳, 秦畅
收稿日期:
2017-09-18
修回日期:
2018-02-04
出版日期:
2018-07-20
发布日期:
2018-07-20
作者简介:
作者简介:李珊,女,四川内江人,硕士生,主要研究领域为土壤性质的时演变。E-mail:
基金资助:
Shan LI(), Qiquan LI, Changquan WANG, Xinye JIANG, Liting LUO, Hongyan FANG, Chang QIN
Received:
2017-09-18
Revised:
2018-02-04
Online:
2018-07-20
Published:
2018-07-20
摘要:
掌握土壤性质的剖面分布特征是认识土壤元素分布与迁移的重要前提。基于134个土壤剖面的523个采样数据,结合地统计学方法和GIS技术,分析了成都平原西部1m深土壤全磷的剖面分布特征,并揭示了成土母质、土壤类型(亚类和土属)和土地利用方式对土壤全磷剖面分布的影响作用。结果表明,成都平原西部土壤全磷含量较高;0~20cm土壤全磷均值含量为0.89g/kg,显著高于20~40cm (0.59g/kg)、40~60cm(0.48g/kg)和60~100cm(0.48g/kg)土壤全磷均值含量。各层土壤全磷具有一致的空间分布格局,呈现出由东北向西南逐渐降低的空间分布趋势。土壤全磷块金系数在30.65%~68.24%之间,具有中等程度的空间变异性,其空间变异受随机性因素和结构性因素共同影响。不同成土母质、土壤类型及土地利用方式土壤全磷均呈现出表聚趋势。成土母质、亚类、土属和土地利用方式是影响研究区土壤全磷空间变异的重要因素,可分别独立解释其9.6%~32.3%、6.0%~16.9%、8.9%~32.6%和4.2%~6.1%的空间变异。在土壤分类单元中,土属的解释能力大于亚类,可作为探究影响成都平原区土壤全磷剖面分布的基本分类单元。成土母质与土属的解释能力相近,是影响研究区土壤全磷剖面分布的主控因素。
李珊, 李启权, 王昌全, 蒋欣烨, 罗丽婷, 方红艳, 秦畅. 成都平原西部土壤全磷的剖面分布及主控因素[J]. 资源科学, 2018, 40(7): 1397-1406.
Shan LI, Qiquan LI, Changquan WANG, Xinye JIANG, Liting LUO, Hongyan FANG, Chang QIN. Profile distribution of soil total phosphorus and controlling factors on the west Chengdu Plain[J]. Resources Science, 2018, 40(7): 1397-1406.
表3
不同土壤类型(亚类和土属)土壤全磷含量剖面分布"
亚类 | 土属 | 0~20cm | 20~40cm | 40~60cm | 60~100cm | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
样本/个 | STP/(g/kg) | 样本/个 | STP/(g/kg) | 样本/个 | STP/(g/kg) | 样本/个 | STP/(g/kg) | |||||
潜育水稻土 | 潜育潮田 | 11 | 1.04 Aab | 11 | 0.72 Bb | 11 | 0.57 Bb | 11 | 0.55 Bb | |||
潜育黄泥田 | 6 | 0.71 Ac | 6 | 0.53 Abcd | 6 | 0.21 Bd | 6 | 0.18 Bc | ||||
合计 | 17 | 0.93 Aab | 17 | 0.65 Bb | 17 | 0.44 Cb | 17 | 0.42 Cb | ||||
渗育水稻土 | 渗育黄泥田 | 4 | 0.75 Abc | 4 | 0.45 Bcd | 4 | 0.45 Bbc | 4 | 0.43 Bb | |||
渗育灰潮田 | 43 | 0.96 Aabc | 43 | 0.70 Bb | 42 | 0.58 Cb | 40 | 0.58 Cb | ||||
渗育灰棕潮田 | 14 | 0.76 Abc | 14 | 0.47 Bcd | 14 | 0.38 Bbcd | 13 | 0.38 Bbc | ||||
渗育紫潮田 | 8 | 0.93 Aabc | 8 | 0.57 Bbcd | 8 | 0.55 Bb | 8 | 0.57 Bb | ||||
合计 | 69 | 0.90 Aab | 69 | 0.62 Bb | 68 | 0.53 Cb | 65 | 0.53 Cb | ||||
脱潜水稻土 | 脱潜潮田 | 8 | 0.92 Aabc | 8 | 0.54 Bbcd | 8 | 0.49 Bbc | 8 | 0.52 Bb | |||
合计 | 8 | 0.92 Aab | 8 | 0.54 Bb | 8 | 0.49 Bb | 8 | 0.52 Bb | ||||
潴育水稻土 | 潴育黄泥田 | 25 | 0.78 Abc | 25 | 0.38 Bd | 25 | 0.34 Bcd | 25 | 0.35 Bbc | |||
潴育灰潮田 | 10 | 0.87 Aabc | 10 | 0.65 Bbc | 10 | 0.54 Bbc | 9 | 0.56 Bb | ||||
合计 | 35 | 0.80 Ab | 35 | 0.46 Bb | 35 | 0.39 Bb | 34 | 0.41 Bb | ||||
新积土 | 新积灰砂土 | 5 | 1.13 Aa | 5 | 0.90 Aa | 2 | 0.87 Aa | 1 | 0.83 Aa | |||
合计 | 5 | 1.13 Aa | 5 | 0.98 Aa | 2 | 0.87 Aa | 1 | 0.83 Aa |
表4
研究区各因素对土壤全磷剖面分布影响的回归分析"
影响因素 | 0~20 cm | 20~40 cm | 40~60 cm | 60~100 cm | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Adjusted R2 | Sig. | Adjusted R2 | Sig. | Adjusted R2 | Sig. | Adjusted R2 | Sig. | ||||
成土母质 | 0.096 | <0.01 | 0.288 | <0.01 | 0.323 | <0.01 | 0.294 | <0.01 | |||
亚类 | - | >0.05 | 0.169 | <0.01 | 0.107 | <0.01 | 0.060 | <0.05 | |||
土属 | 0.089 | <0.05 | 0.326 | <0.01 | 0.314 | <0.01 | 0.265 | <0.01 | |||
土地利用方式 | 0.042 | 0.05 | - | >0.05 | 0.046 | <0.05 | 0.061 | <0.05 |
[1] | Szogi A A, Bauer P J, Vanotti M B.Vertical distribution of phosphorus in a sandy soil fertilized with recovered manure phosphates[J]. J Soils Sediments, 2012, 12(3): 334-340. |
[2] | Liu Y, Jiang M, Lu X, et al. Carbon, nitrogen and phosphorus contents of wetland soils in relation to environment factors in Northeast China[J]. Wetlands, 2017, 37(1): 153-161. |
[3] | 贾振宇, 张俊华, 丁圣彦, 等. 基于GIS 和地统计学的黄泛区土壤磷空间变异-以周口为例[J]. 应用生态学报, 2016, 27(4): 1211-1220. |
[Jia Z Y, Zhang J H, Ding S Y, et al. Spatial variation of soil phosphorus in flooded area of the Yellow River based on GIS and geo-statistical methods: a case study in Zhoukou City, Henan, China[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1211-1220.] | |
[4] | 张铁钢, 李占斌, 刘晓君, 等. 丹江鹦鹉沟小流域土壤全磷空间分布及流失特征[J]. 西安理工大学学报, 2016, 32(1): 18-22. |
[Zhang T G, Li Z B, Liu X J, et al. The spatial distribution and loss of soil total phosphorus in Yingwugou Watershed of Danjiang River[J]. Journal of Xi’an University of Technology, 2016, 32(1): 18-22.] | |
[5] | 张铁钢, 李占斌, 李鹏, 等. 土石山区小流域土壤磷素的空间分布特征与有效性[J]. 环境科学学报, 2016, 36(5): 1810-1815. |
[Zhang T G, Li Z B, Li P, et al. Spatial distribution and effectiveness of soil phosphorus in the mountain Watershed[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1810-1815.] | |
[6] | 陈志超, 杨小林, 刘昌华. 万安流域不同土地利用类型土壤全磷时空分异特征[J]. 土壤通报, 2014, 45(4): 857-862. |
[Chen Z C, Yang X L, Liu C H.Spatial and temporal variations of soil total phosphorus under different land use types in Wan’an Watershed[J]. Chinese Journal of Soil Science, 2014, 45(4): 857-862.] | |
[7] | 刘文杰, 陈生云, 胡凤祖, 等. 疏勒河上游土壤磷和钾的分布及其影响因素[J]. 生态学报, 2012, 32( 17): 5429-5437. |
[Liu W J, Chen S Y, Hu F Z, et al. Distributions pattern of phosphorus, potassium and influencing factors in the upstream of Shule river basin[J]. Acta Ecologica Sinica, 2012, 32(17): 5429-5437.] | |
[8] | Cheng Y, Li P, Xu G, et al. Spatial distribution of soil total phosphorus in Yingwugou watershed of the Dan River, China[J]. Catena, 2016, 136: 175-181. |
[9] | Liu Z P, Shao M A, Wang Y Q, et al. Spatial patterns of soil total nitrogen. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China[J]. Geoderma, 2013, 197-198: 67-78. |
[10] | Tian J H, Boitt G, Black A, et al. Accumulation and distribution of phosphorus in the soil profile under fertilized grazed pasture[J]. Agriculture, Ecosystems and Environment, 2017, 239: 228-235. |
[11] | 张田, 许浩, 茹淑华, 等. 不同有机肥中磷在土壤剖面中累积迁移特征与有效性差异[J]. 环境科学, 2017, 38(12): 5247-5255. |
[Zhang T, Xu H, Ru S H, et al. Distribution of phosphorus in soil profile after application of different fertilizer continuously[J]. Environmental Science, 2017, 38(12): 5247-5255.] | |
[12] | 樊红柱, 陈庆瑞, 秦鱼生, 等. 长期施肥紫色水稻土磷素累积与迁移特征[J]. 中国农业科学, 2016, 49(8): 1520-1529. |
[Fan H Z, Chen Q R, Qin Y S, et al. Characteristics of phosphorus accumulation and movement in a calcareous purple paddy soil profile as affected by long-term fertilization[J]. Scientia Agricultura Sinica, 2016, 49(8): 1520-1529. ] | |
[13] | Viscarra Rossel R A, Bui E N. A new detailed map of total phosphorus stocks in Australian soil[J]. Science of the Total Environment, 2016, 542: 1040-1049. |
[14] | Jiang F, Wu X H, Xiang W H, et al. Spatial variations in soil organic carbon, nitrogen and phosphorus concentrations related to stand characteristics in subtropical areas[J]. Plant Soil, 2017, 413(1-2): 289-301. |
[15] | 钱进, 沈蒙蒙, 王沛芳, 等. 河岸带土壤磷素空间分布及其对水文过程响应[J]. 水科学进展, 2017, 28(1): 41-48. |
[Qian J, Shen M M, Wang P F, et al. Spatial distribution of riparian soil phosphorus and its response to hydrologic process[J]. Advances in Water Science, 2017, 28(1): 41-48.] | |
[16] | 金慧龙, 李裕元, 高茹, 等. 亚热带小流域土壤氮磷分布及其环境效应[J]. 水土保持学报, 2012, 26(3): 123-126. |
[Jin H L, Li Y Y, Gao R, et al. Distribution of soil nitrogen, phosphorus and its environmental effects in a small Subtropical Watershed[J]. Journal of Soil & Water Conservation, 2012, 26(3): 123-126.] | |
[17] | Tong Y, Zhang W, Wang X, et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006[J]. Nature Geoscience, 2017, 10(7): 507-511. |
[18] | Liu X L, Li T, Zhang S R, et al. The role of land use, construction and road on terrestrial carbon stocks in a newly urbanized area of western Chengdu, China[J]. Landscape Urban Planning, 2016, 147: 88-95. |
[19] | 阚泽忠, 金立新, 李忠惠, 等. 成都经济区不同地貌景观区土壤有机碳分布特征及储量估算[J]. 地球科学进展, 2012, 27(10): 1126-1133. |
[Kan Z H, Jin L X, Li Z H, et al. Distribution characteristics and reserves estimation of soil organic carbon of different physiognomy in Chengdu economic zone[J]. Advances in Earth Science, 2012, 27(10): 1126-1133.] | |
[20] | 陈青松, 李婷, 张世熔, 等. 城乡交错带土壤氮素空间分布及其影响因素[J]. 生态学报, 2016, 36(8): 2133-2141. |
[Chen Q S, Li T, Zhang S R, et al. Spatial distribution of soil nitrogen in an urban-rural fringe and its influencing factors[J]. Acta Ecologica Sinica, 2016, 36(8): 2133-2141.] | |
[21] | 袁大刚, 付帅, 冯丕, 等. 成都西部不同交通环线区域绿地土壤肥力特征比较研究[J]. 土壤, 2015, 47(1): 55-62. |
[Yuan D G, Fu S, Fend P, et al. Soil fertility characteristics of urban green space among different ring road districts in west Chengdu[J]. Soils, 2015, 47(1): 55-62.] | |
[22] | 王启, 李艳, 王连维, 等. 成都东部“城-郊-乡”梯度绿地土壤碳氮磷化学计量特征[J]. 土壤, 2017, 49(2): 358-363. |
[Wang Q, Li Y, Wang L W, et al. Stoichiometric characteristics of soil C, N and P of green space along urban-suburb-rural gradient in eastern Chengdu[J]. Soils, 2017, 49(2): 358-363.] | |
[23] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[Lu R K.Methods for Agricultural Chemical Analysis of Soil[M]. Beijing: China Agricultural Scientech Press, 2000.] | |
[24] | 陈冲, 贾重建, 卢瑛, 等. 珠江三角洲平原土壤磷剖面分布及形态特征研究[J]. 土壤通报, 2015, 46(5): 1025-1033. |
[Chen C, Jia C J, Lu Y, et al. Studies on P distribution and fractions in soil profile of cultivated land in Pearl River Delta Plain[J]. Chinese Journal of Soil Science, 2015, 46(5): 1025-1033.] | |
[25] | Li Q X, Jia Z Q, Liu T, et al. Effects of different plantation types on soil properties after vegetation restoration in an alpine sandy land on the Tibetan Plateau, China[J]. J Arid Land, 2017, 9(2): 200-209. |
[26] | 孔庆波, 白由路, 杨俐苹, 等. 黄淮海平原农田土壤磷素空间分布特征及影响因素研究[J]. 中国土壤与肥料, 2009, (5): 10-14. |
[Kong Q B, Bai Y L, Yang L P, et al. Spatial distribution characteristic and its influential factors of soil phosphorus in region of the Huang-Huai-Haiplai[J]. Soil and Fertilizer Sciences in China, 2009, (5): 10-14.] | |
[27] | 成都市土壤普查成果资料汇编委员会. 成都土壤[M]. 成都: 成都市农牧局, 1993. |
[Committee of Soil Survey Compilation in Chengdu. Chengdu Soil[M]. Chengdu: Agriculture and Animal Husbandry Bureau in Chengdu, 1993. ] | |
[28] | 贾国梅, 何立, 程虎, 等. 三峡库区不同植被土壤微生物量碳氮磷生态化学计量特征[J]. 水土保持研究, 2016, 23(4): 23-27. |
[Jia G M, He L, Cheng H, et al. Ecological stoichiometry characteristics of soil microbial biomass carbon, nitrogen and phosphorus under different vegetation covers in three gorges reservoir area[J]. Research of Soil and Water Conservation, 2016, 23(4): 23-27.] |
[1] | 杨定, 杨振山. 高寒地区生态贫困评价及影响因素分析——以色林错地区为例[J]. 资源科学, 2021, 43(2): 293-303. |
[2] | 强文丽, 张翠玲, 刘爱民, 成升魁, 王祥, 李凡. 全球农产品贸易的虚拟耕地资源流动演变及影响因素[J]. 资源科学, 2020, 42(9): 1704-1714. |
[3] | 韩璟, 陈泽秀, 卢新海. 中国海外耕地投资发展的时空格局演变与影响因素[J]. 资源科学, 2020, 42(9): 1715-1727. |
[4] | 张立新, 毕旭, 黄志基. 经济转型背景下城市工业用地利用效率——以长江经济带城市为例[J]. 资源科学, 2020, 42(9): 1728-1738. |
[5] | 王萍萍, 韩一军, 张益. 中国农业化肥施用技术效率演变特征及影响因素[J]. 资源科学, 2020, 42(9): 1764-1776. |
[6] | 黄晶, 薛东前, 代兰海. 农产品主产区村镇建设资源环境承载力空间分异及影响因素——以甘肃省临泽县为例[J]. 资源科学, 2020, 42(7): 1262-1274. |
[7] | 杨凯悦, 宋永永, 薛东前. 黄土高原乡村聚落用地时空演变与影响因素[J]. 资源科学, 2020, 42(7): 1311-1324. |
[8] | 唐健雄, 马梦瑶. 中国工业旅游示范点空间分布特征及影响因素[J]. 资源科学, 2020, 42(6): 1188-1198. |
[9] | 岳立, 薛丹. 黄河流域沿线城市绿色发展效率时空演变及其影响因素[J]. 资源科学, 2020, 42(12): 2274-2284. |
[10] | 刘晨光. 黄河流域专业村空间格局演化及影响因素[J]. 资源科学, 2020, 42(12): 2300-2313. |
[11] | 张新, 刘家明, 朱鹤, 李涛. 北京郊区参与型体育旅游资源时空演化特征及影响因素[J]. 资源科学, 2020, 42(11): 2196-2209. |
[12] | 姜正龙, 王兵, 姜玲秀, 陈映, 刘玖芬, 任永吉, 张贺. 中国海岸带自然资源区划研究[J]. 资源科学, 2020, 42(10): 1900-1910. |
[13] | 乔家君, 朱乾坤, 辛向阳. 黄河流域农区贫困特征及其影响因素[J]. 资源科学, 2020, 42(1): 184-196. |
[14] | 王永卿,王来峰,邓洪星,董凯. 湖北省绿色矿山建设影响因素及其效果分析[J]. 资源科学, 2019, 41(8): 1513-1525. |
[15] | 张诩, 乔娟, 沈鑫琪. 养殖废弃物治理经济绩效及其影响因素——基于北京市养殖场(户)视角[J]. 资源科学, 2019, 41(7): 1250-1261. |
|