资源科学 ›› 2018, Vol. 40 ›› Issue (4): 818-828.doi: 10.18402/resci.2018.04.15
周田田1,2(), 韩冬梅1,2(
), 宋献方1,2, 马英1,2, 张应华1
收稿日期:
2017-09-18
修回日期:
2018-02-08
出版日期:
2018-05-02
发布日期:
2018-05-02
作者简介:
作者简介:周田田,女,湖北咸宁人,硕士生,主要从事地下水水文过程研究。E-mail:
基金资助:
Tiantian ZHOU1,2(), Dongmei HAN1,2(
), Xianfang SONG1,2, Ying MA1,2, Yinghua ZHANG1
Received:
2017-09-18
Revised:
2018-02-08
Online:
2018-05-02
Published:
2018-05-02
摘要:
包气带水分运移规律的研究能够为干旱区滴灌水盐调控改良盐碱地的技术提供理论基础。本文以克拉玛依农业开发区经改良的重度盐碱地棉田为例,观测棉花生长季内的土水势、土壤含水量和不同水体的同位素组成的时空分布特征,分析包气带水分运移。结果表明:①在滴灌水盐调控下,经改良的重度盐碱地棉田0~60 cm土层的含水量随时间的变化最大,受灌溉水(降水)入渗、蒸散发的影响最为明显;60~220 cm土壤含水量、土水势和土壤水同位素组成随时间的变幅相对较小,受灌溉水(降水)入渗、蒸散发的影响相对较小;220~260 cm土壤含水量、土水势和土壤水同位素组成随时间的变幅最小,受地下水的影响较明显;②120 cm和150 cm土壤水,100 cm和180 cm土壤水,260 cm土壤水中降水和灌溉水的贡献比例分别约为22%和78%,40%和60%,46%和54%左右,分别反映本次试验入渗水、前期土壤水、地下水的同位素组成特征;③灌溉水对地下水的影响较小,试验期间地下水位的抬升主要来自于侧向径流补给。
周田田, 韩冬梅, 宋献方, 马英, 张应华. 干旱区滴灌水盐调控改良重度盐碱地棉田的包气带水分运移分析[J]. 资源科学, 2018, 40(4): 818-828.
Tiantian ZHOU, Dongmei HAN, Xianfang SONG, Ying MA, Yinghua ZHANG. Water movement through unsaturated zones in the severe saline-alkali cotton fields in inland arid regions underwater and salt regulation by drip irrigation[J]. Resources Science, 2018, 40(4): 818-828.
表1
试验田不同深度土壤类型与干容重"
深度/cm | <0.002mm黏粒 | 0.002~0.050mm粉粒 | >0.050mm砂粒 | 土壤类型 | 干容重/(g/cm3) |
---|---|---|---|---|---|
0~40 | 2.39 | 90.27 | 7.34 | 粉土 | 1.31 |
40~120 | 1.73 | 92.05 | 6.22 | 粉土 | 1.49 |
120~140 | 0.46 | 42.05 | 57.49 | 砂质壤土 | 1.53 |
140~160 | 0.16 | 19.27 | 80.57 | 壤质砂土 | 1.32 |
160~180 | 0.00 | 10.98 | 89.02 | 砂土 | 1.29 |
180~200 | 0.02 | 13.28 | 86.70 | 砂土 | 1.36 |
200~260 | 0.00 | 15.34 | 84.66 | 壤质砂土 | 1.32 |
表3
试验田降水、灌溉水、地下水以及不同深度土壤水的同位素组成特征"
水样类型 | 深度/cm | 采样数量 | δ18O/‰ | δ2H/‰ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 标准差 | 最大值 | 最小值 | 平均值 | 标准差 | ||||
降水 | 5 | -1.0 | -4.8 | -3.6 | 1.4 | -18 | -44 | -30 | 9.8 | ||
灌溉水 | 5 | -14.8 | -15.3 | -15.0 | 0.2 | -109 | -113 | -111 | 1.9 | ||
土壤水 | 100 | 13 | -7.3 | -9.7 | -8.4 | 0.6 | -76 | -80 | -78 | 1.5 | |
120 | 13 | -11.8 | -13.9 | -12.5 | 0.6 | -88 | -95 | -93 | 1.7 | ||
150 | 13 | -11.9 | -14.4 | -12.4 | 0.6 | -90 | -94 | -93 | 1.3 | ||
180 | 13 | -8.7 | -9.5 | -9.1 | 0.2 | -76 | -82 | -79 | 1.3 | ||
260 | 13 | -7.4 | -8.5 | -8.0 | 0.3 | -70 | -75 | -73 | 1.6 | ||
地下水 | 7 | -6.5 | -8.3 | -7.5 | 0.6 | -67 | -75 | -71 | 2.7 |
表4
花铃期试验田不同深度土壤水分来源的贡献比例"
年/月/日 | 100cm | 120cm | 150cm | 180cm | 260cm | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ2H/‰ | 灌溉水 | 降水 | δ2H/‰ | 灌溉水 | 降水 | δ2H/‰ | 灌溉水 | 降水 | δ2H/‰ | 灌溉水 | 降水 | δ2H/‰ | 灌溉水 | 降水 | |||||
2010/08/20 | -76.0 | 56.8 | 43.2 | -93.7 | 78.6 | 21.4 | -91.2 | 75.6 | 24.4 | -81.6 | 63.7 | 36.3 | -70.5 | 50.0 | 50.0 | ||||
2010/08/21 | -75.7 | 56.4 | 43.6 | -91.5 | 76.0 | 24.0 | -91.5 | 75.9 | 24.1 | -76.4 | 57.3 | 42.7 | -71.9 | 51.7 | 48.3 | ||||
2010/08/22 | -76.1 | 57.0 | 43.0 | -92.6 | 77.3 | 22.7 | -90.2 | 74.4 | 25.6 | -78.3 | 59.6 | 40.4 | -70.3 | 49.7 | 50.3 | ||||
2010/08/23 | -76.0 | 56.8 | 43.2 | -93.6 | 78.5 | 21.5 | -94.1 | 79.1 | 20.9 | -80.1 | 61.9 | 38.1 | -74.8 | 55.3 | 44.7 | ||||
2010/08/24 | -78.0 | 59.3 | 40.7 | -95.2 | 80.5 | 19.5 | -93.8 | 78.8 | 21.2 | -79.5 | 61.2 | 38.8 | -75.2 | 55.8 | 44.2 | ||||
2010/08/25 | -78.7 | 60.1 | 39.9 | -92.6 | 77.3 | 22.7 | -91.9 | 76.5 | 23.5 | -79.8 | 61.5 | 38.5 | -73.8 | 54.1 | 45.9 | ||||
2010/08/26 | -78.0 | 59.3 | 40.7 | -94.0 | 79.0 | 21.0 | -93.0 | 77.8 | 22.2 | -80.0 | 61.8 | 38.2 | -73.7 | 53.9 | 46.1 | ||||
2010/08/27 | -77.7 | 58.9 | 41.1 | -94.0 | 79.1 | 20.9 | -93.9 | 78.8 | 21.2 | -80.1 | 61.9 | 38.1 | -74.0 | 54.3 | 45.7 | ||||
2010/08/31 | -80.1 | 61.9 | 38.1 | -93.7 | 78.6 | 21.4 | -94.2 | 79.2 | 20.8 | -79.1 | 60.7 | 39.3 | -73.4 | 53.6 | 46.4 | ||||
2010/09/01 | -78.9 | 60.4 | 39.6 | -94.0 | 79.0 | 21.0 | -93.9 | 78.9 | 21.1 | -78.8 | 60.3 | 39.7 | -73.2 | 53.3 | 46.7 | ||||
2010/09/02 | -79.5 | 61.1 | 38.9 | -94.1 | 79.2 | 20.8 | -94.5 | 79.6 | 20.4 | -79.8 | 61.5 | 38.5 | -74.0 | 54.3 | 45.7 | ||||
2010/09/03 | -78.6 | 60.0 | 40.0 | -93.1 | 77.9 | 22.1 | -93.0 | 77.8 | 22.2 | -78.1 | 59.4 | 40.6 | -74.5 | 54.9 | 45.1 | ||||
2010/09/04 | -75.8 | 56.5 | 43.5 | -88.4 | 72.1 | 27.9 | -92.8 | 77.5 | 22.5 | -77.7 | 58.9 | 41.1 | -74.9 | 55.4 | 44.6 | ||||
平均值 | -77.6 | 58.8 | 41.2 | -93.1 | 77.9 | 22.1 | -92.9 | 77.7 | 22.3 | -79.2 | 60.7 | 39.3 | -73.4 | 53.6 | 46.4 |
[1] | 姚晓蕊, 潘存德, 张荟荟, 等. 土地开发后克拉玛依农业开发区水土环境特征研究[J]. 新疆农业大学学报, 2008, 31(1): 1-6. |
[Yao X R, Pan C D, Zhang H H, et al. Study on the water-soil environment characteristics in Karamay Agricultural Development Region after land exploitation[J]. Journal of Xinjiang Agricultural University, 2008, 31(1): 1-6.] | |
[2] | 崔东, 刘振英, 罗昭辉, 等. 新疆克拉玛依干旱地区生态农业项目水文地质详查报告[M]. 克拉玛依: 新疆维吾尔自治区水利水电勘测设计研究院, 1997. |
[Cui D, Liu Z Y, Luo Z H, et al. Hydrogeological Survey Report of Ecological Agricultural Area in Karamay Arid Region[M]. Karamay: Institute of Water Resources and Hydropower Survey and Design in Xinjiang Uygur Autonomous Region, 1997.] | |
[3] | 王若水, 康跃虎, 万书勤, 等. 水分调控对盐碱地土壤盐分与养分含量及分布的影响[J]. 农业工程学报, 2014, 30(14): 96-104. |
[Wang R S, Kang Y H, Wan S Q, et al. Effects of water regulation methods on soil salt, nutrient content and its distribution in overlying saline wasteland[J]. Transactions of the CSAE, 2014, 30(14): 96-104.] | |
[4] | Hegde D M.Effect of soil matric potential, method of irrigation and nitrogen fertilization on yield, quality, nutrient uptake and water use of radish (Raphanus sativus L.)[J]. Irrigation Science, 1987, 8(1): 13-22. |
[5] | Liu H, Yang H, Zheng J, et al. Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China[J]. Agricultural Water Management, 2012, 115(19): 232-241. |
[6] | Wang R, Kang Y, Wan S, et al. Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area[J]. Agricultural Water Management, 2011, 100(1): 58-69. |
[7] | Kang Y, Wang R, Wan S, et al. Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China[J]. Agricultural Water Management, 2012, 109: 117-126. |
[8] | Contreras J I, Alonso F, Canovas G, et al. Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects[J]. Agricultural Water Management, 2016, 183: 26-34. |
[9] | Muller T, Bouleau C R, Perona P.Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds[J]. Agricultural Water Management, 2016, 177: 54-65. |
[10] | 窦超银, 康跃虎, 万书勤. 地下水浅埋区重度盐碱地覆膜咸水滴灌水盐动态试验研究[J]. 土壤学报, 2011, 48(3): 524-532. |
[ Dou,C Y, Kang, Y H, Wan S Q. Field study on water and salt dynamic changes of saline-sodic soil with shallow water table under mulch-drip irrigation by saline water[J]. Acta Pedologica Sinica, 2011, 48(3): 524-532.] | |
[11] | 焦艳平, 康跃虎, 万书勤, 等. 干旱区盐碱地覆膜滴灌土壤基质势对土壤盐分分布的影响[J].农业工程学报, 2008, 24(6): 53-58. |
[Jiao Y P, Kang Y H, Wan S Q, et al. Effect of soil matric potential on the distribution of soil salt under drip irrigation on saline and alkaline land in arid regions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(6): 53-58.] | |
[12] | 汪集旸, 陈建生, 陆宝宏, 等. 同位素水文学的若干回顾与展望[J]. 河海大学学报(自然科学版), 2015, 43(5): 406-413. |
[Wang J Y, Chen J S, Lu B H, et al. Reciew and prospect of isotope hydrology[J]. Journal of Hohai University (Nature Sciences), 2015, 43(5): 406-413.] | |
[13] | 王若水. 内陆干旱区重度盐碱地滴灌土壤水盐调控机制与农业利用方法研究[D]. 北京: 中国科学院研究生院, 2012. |
[Wang R S.Study on the Mechanism of Water and Salt Control and the Method of Agricultural Utilization On Strongly Saline-Sodic Soil in Inland Arid Regions[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012.] | |
[14] | Cui Y L, Shao J L.The role of ground water in arid/semiarid ecosystems, Northwest China[J]. Ground Water, 2005, 43(4): 471-477. |
[15] | Han D M, Song X F, Currell M J, et al. A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay Agricultural Development Area, northwest China: implications for soil and groundwater salinity resulting from surface water transfer for irrigation[J]. Journal of Hydrology, 2011, 405(3-4): 217-234. |
[16] | 孙九胜, 耿庆龙, 常福海, 等. 克拉玛依农业开发区地下水埋深与土壤积盐空间异质性分析[J]. 新疆农业科学, 2012, 49(8): 1471-1476. |
[Sun J S, Geng Q L, Chang F H, et al. Spatial distribution pattern quantitative analysis of soil salt accumulation and groundwater depth in the Karamay agricultural development zone[J]. Xinjiang Agricultural Sciences, 2012, 49(8): 1471-1476.] | |
[17] | Gonfiantini R.Environmental Isotopes in Lake Studies[A]. Fritz P, Fontes J C. Handbook of Environmental IsotopeGeochemistry[C]. Amsterdam: Elsevier, 1996. |
[18] | 郭元裕. 农田水利学(3版)[M]. 北京: 中国水利水电出版社, 1997. |
[Guo Y Y.Irrigation and Water Conservancy, the 3rd Edition[M]. Beijing: China Water Conservancy and Hydropower Press, 1997.] | |
[19] | 李晖, 蒋忠诚, 王月, 等. 新疆地区大气降水中稳定同位素的变化特征[J]. 水土保持研究, 2009, 16(5): 157-161. |
[Li H, Jiang Z C, Wang Y, et al. Variation characteristics of stable isotopes in the precipitation of Xinjiang[J]. Research of Soil and Water Conservation, 2009, 16(5): 157-161.] | |
[20] | 李捷, 庞忠和, 古丽波斯坦·吐逊江, 等. 北疆大气降水水汽源识别及其对地下水补给的指示意义[J]. 科技导报, 2016, 34(18): 118-124. |
[Li J, Pang Z H, Tursun G, et al. Identification of moisture sources in Junggar Basin and its implication for groundwater recharge[J]. Science and Technology Review, 2016, 34(18): 118-124.] | |
[21] | 危常州, 马富裕, 雷咏雯, 等. 棉花膜下滴灌根系发育规律的研究[J]. 棉花学报, 2002, 14(4): 209-214. |
[Wei C Z, Ma F Y, Lei Y W, et al. Study on the cotton root development and spatial distribution under film mulch and drip irrigation[J]. Cotton Science, 2002, 14(4): 209-214.] | |
[22] | Zimmermann U, Ehhalt D, Munnich K O.Soil-Water Movement and Evapotranspiration: Changes in the Isotopic Composition of the Water[C]. Vienna: Proceedings of the Symposium on Isotopes in Hydrology, 1966. |
[23] | Kortelainen N M, Karhu J A.Regional and seasonal trends in the oxygen and hydrogen isotope ratios of Finnish groundwaters: a key for mean annual precipitation[J]. Journal of Hydrology, 2004, 285(1-4): 143-157. |
[24] | 乔冈, 王文科. 西北干旱内陆盆地区裸土蒸发强度[J]. 吉林大学学报(地), 2014, 44(4): 1327-1332. |
[Qiao G, Wang W K.Evaporation intensity of bare soil in northwest arid inland basin[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1327-1332.] | |
[25] | Wan H, Liu W G.An isotope study (δ18O and δD) of water movements on the Loess Plateau of China in arid and semiarid climates[J]. Ecological Engineering, 2016, 93: 226-233. |
[26] | 孙芳强, 尹立河, 马洪云, 等. 新疆三工河流域土壤水δD和δ18O特征及其补给来源[J]. 干旱区地理, 2016, 39(6): 1298-1304. |
[Sun Z Q, Yin L H, Ma H Y, et al. Features of δD and δ18O and origin of soil water in Sangong River Basin, Xinjiang[J]. Arid Land Geography, 2016, 39(6): 1298-1304.] | |
[27] | Gazis C, Feng X.A stable isotope study of soil water: evidence for mixing and preferential flow paths[J]. Geoderma, 2004, 119(1-2): 97-111. |
[28] | 陈银磊. 克拉玛依大农业区地下水动态研究[D]. 石河子: 石河子大学, 2016. |
[Chen, Y L.Research on Groundwater Dynamic in Karamay Agricultural Area.[D] Shihezi: Shihezi University, 2016.] | |
[29] | 卢磊, 赵振勇, 蒙敏, 等. 准噶尔盆地西北缘新垦绿洲地下水动态[J]. 干旱区研究, 2011, 28(5): 750-755. |
[Lu L, Zhao Z Y, Meng M, et al. Study on dynamic change of groundwater depth in a newly reclaimed oasis in Northwestern marginal zone of the Junggar Basin[J]. Arid Zone Research, 2011, 28(5): 750-755.] | |
[30] | Richards S J, Weeks L V.Moisture movement in soils: Experiments show moisture movement from one portion of soil to another and soil factors which influence that movement[J]. Plant Ecology & Evolution, 1957, 146(3): 279-289. |
[1] | 胡博伟, 周亮, 王中辉, 车磊, 张梦瑶. 干旱区资源型城市绿色经济效率时空分异特征[J]. 资源科学, 2020, 42(2): 383-293. |
[2] | 周玄德, 郭华东, 孜比布拉·司马义, 邓祖涛, 梁滨. 干旱区绿洲城市遥感生态指数变化监测[J]. 资源科学, 2019, 41(5): 1002-1012. |
[3] | 孙广友, 王海霞. 松嫩平原盐碱地大规模开发的前期研究,灌区格局与风险控制[J]. 资源科学, 2016, 38(3): 407-413. |
[4] | 亓沛沛, 冉圣宏, 田玉军, 张凯. 干旱区绿洲城市扩张对水资源的影响——以石河子市为例[J]. , 2011, 33(9): 1720-1726. |
[5] | 张凤荣. 半干旱区土地利用变化及其驱动力与土地可持续利用——基于内蒙古自治区伊金霍洛旗的案例分析[J]. , 2011, 33(11): 2041-2046. |
[6] | 包安明, 方晖, 李均力, 杨辽. 近期亚洲中部高山地区湖泊变化的时空分析[J]. , 2011, 33(10): 1839-1846. |
[7] | 方江平, 郭其强, 罗大庆, 权 红, 赵垦田. 西藏半干旱区三种柏树抗旱性研究[J]. , 2010, 32(8): 1601-1607. |
[8] | 黄斌, 王劲松, 张洪芬. 1962年至2006年中国西北区与季风区春季气温变化特征对比[J]. , 2010, 32(6): 1082-1087. |
[9] | 李勋贵, 王乃昂, 魏霞. 高含沙河流汛期弃水量确定的分级最大值法[J]. , 2010, 32(6): 1213-1219. |
[10] | 王静爱, 徐品泓, 岳耀杰, 张 峰, 张 化, 张国明. 滨海盐碱地利用变化与优化研究[J]. , 2010, 32(3): 423-430. |
[11] | 郭 凯, 李向军, 刘小京, 张秀梅. 冬季咸水结冰灌溉对滨海盐碱地的改良效果研究[J]. , 2010, 32(3): 431-435. |
[12] | 史培军, 于长水, 岳耀杰, 张化, 张国明. 环渤海地区滨海盐碱地不同排盐处理下的台田降盐效率[J]. , 2010, 32(3): 436-441. |
[13] | 李 雅, 林 要, 盛中尧, 王静爱, 岳耀杰, 张 化, 张 粤. 环渤海盐碱地台田季节性脱盐效率与生产效益分析[J]. , 2010, 32(3): 442-447. |
[14] | 杜俊, 范小黎, 师长兴. 克拉玛依农业开发区地下水位变化原因分析[J]. , 2010, 32(10): 1883-1889. |
[15] | 康淑媛, 刘艳艳, 张 勃, 张耀宗. 1960年至2005年河西干旱区的日照时数变化时空特征分析[J]. , 2009, 31(9): 1581-1586. |
|