资源科学 ›› 2018, Vol. 40 ›› Issue (3): 589-599.doi: 10.18402/resci.2018.03.13

• • 上一篇    下一篇

基于废弃手机的高技术矿产可供性研究

何朋蔚1(), 王昶1,2(), 左绿水1, 孙桥1   

  1. 1. 中南大学商学院,长沙 410083
    2. 国土资源部国土资源战略研究重点实验室,北京 100812
  • 收稿日期:2017-08-09 修回日期:2018-02-08 出版日期:2018-03-10 发布日期:2018-03-10
  • 作者简介:

    作者简介: 何朋蔚,男,广东兴宁市人,博士生,主要研究方向为资源经济与管理。E-mail:hepengwei@csu.edu.cn

  • 基金资助:
    国家社会科学基金重大项目(14ZDB136);国家自然科学基金重点项目(71633006);国家社会科学基金一般项目(15BGL147)

Availability analysis of high-tech minerals in waste mobile phones

Pengwei HE1(), Chang WANG1,2(), Lyushui ZUO1, Qiao SUN1   

  1. 1. School of Business, Central South University, Changsha 410083, China
    2. Key Laboratory of Strategic Studies, Ministry of Land and Resources, Beijing 100812, China
  • Received:2017-08-09 Revised:2018-02-08 Online:2018-03-10 Published:2018-03-10

摘要:

高技术矿产是国家战略性新兴产业发展的关键原材料,而废弃手机中含有丰富的高技术矿产。随着经济发展,手机成为生活中常见的电子产品,中国已成为全球最大的手机生产地和消费国,每年产生大量废弃手机。尽管现有研究开始关注手机废弃量测算,但并未考虑“水货”和“山寨”手机对实际手机量的影响,也少有将功能型手机与智能型手机蕴含物质的差异作区分,使得废弃手机高技术矿产的可供种类、规模等问题缺乏深入研究。因此,本文在区分功能型手机和智能型手机的基础上,运用动态物质流方法,测算出手机废弃量及其所蕴含的高技术矿产社会存量,并讨论相关因素对高技术城市矿产成矿种类、品位、规模和速度的影响。研究结果表明:① 1987—2016年,中国手机废弃总量超过33.26亿台;② 1987—2016年,中国废弃手机中蕴含各类高技术矿产总社会存量超过1.53万t; ③ 受多重因素影响,未来废弃手机高技术矿产的可供存量还将在种类、品位、成矿规模和成矿速度等方面发生显著变化。基于上述分析,本文针对合理开发中国高技术城市矿产,保障高技术矿产资源供给安全,提出相关建议。

关键词: 废弃手机, 高技术矿产, 物质流, 可供性研究

Abstract:

High-tech minerals are key raw materials in national strategic emerging industries; waste mobile phones contain a variety of high-tech minerals. With rapid economic development mobile phones have become one of the most common electronic devices. China became the largest producer and consumer of mobile phones in 2004, and a large volume of waste mobile phones are generated annually. Although current research has focused on the estimation of waste mobile phones, most studies have neglected the influence of ‘smuggled mobile phones’ and ‘shanzhai mobile phones’. Studies have only considered mobile phones as an integral subject and ignored differences between distinct types of mobile phones and their contained materials. This leads to a lack of advanced knowledge in high-tech minerals in waste mobile phones in terms of the type availability and scale availability. Here, we adopted a dynamic material flow method to calculate the amount of waste mobile phones and social stock containing high-tech minerals based on the differentiation of feature phones and smartphones. We found that from 1987 to 2016, the total amount of waste mobile phones in China exceeded 3.33 billion units. From 1987 to 2016, the total social stock of various high-tech urban minerals contained in China, overall waste mobile phones, exceeded 15.31 thousand tons. This is influenced by various factors, the future stock availability of high tech minerals in waste mobile phones will confront significant changes in terms of variety, grade, scale and mineralization speed. In conclusion, we put forward suggestions for the effective and efficient exploitation of high-tech urban minerals to ensure a sustainable supply of high-tech minerals in China.

Key words: waste mobile phone, high-tech mineral, material flow, availability analysis