资源科学 ›› 2018, Vol. 40 ›› Issue (1): 11-21.doi: 10.18402/resci.2018.01.02

• • 上一篇    下一篇

基于供求关系的城镇建设用地适宜性评价——以扬州市为例

孟霖1(), 郭杰1,2,3, 孙驰1, 欧名豪1,2,3()   

  1. 1. 南京农业大学土地管理学院,南京 210095
    2. 统筹城乡发展与土地管理创新研究基地,南京 210095
    3. 农村土地资源利用与整治国家地方联合工程研究中心,南京 210095
  • 收稿日期:2017-05-10 修回日期:2017-11-14 出版日期:2018-01-20 发布日期:2018-01-20
  • 作者简介:

    作者简介:孟霖,女,山东济南市人,博士生,主要研究方向为土地利用规划与管理。E-mail: 465545167@qq.com

  • 基金资助:
    国家自然科学基金项目(71774086);国家自然科学基金项目(71774085);江苏省普通高校学术学位研究生创新计划项目(KYLX15_0540)

Suitability evaluation of urban construction land based on supply and demand in Yangzhou City

Lin MENG1(), Jie GUO1,2,3, Chi SUN1, Minghao OU1,2,3()   

  1. 1. College of Land Management, Nanjing Agricultural University, Nanjing 210095, China
    2. Center of Urban-rural Joint Development and Land Management Innovation, Nanjing 210095, China
    3. State and Local Joint Engineering Research Center of Rural Land Resources Utilization and Consolidation, Nanjing 210095, China
  • Received:2017-05-10 Revised:2017-11-14 Online:2018-01-20 Published:2018-01-20

摘要:

本文基于供求理论构建城镇建设用地适宜性评价指标体系,应用BP神经网络模型测算城镇建设用地适宜性,以期为城镇建设用地的科学配置奠定理论与实践基础,实现区域土地资源的可持续利用。研究结果表明,①基于供求理论,可以从本底条件、技术水平、区位交通、集约程度、人口密度、经济发展等方面构建城镇建设用地适宜性评价指标体系;②BP神经网络可准确反映各评价单元的城镇建设用地适宜性,有助于提高城镇建设用地适宜性评价结果的精度;③根据测算结果可将研究区分为四个区域:高度适宜区可进行大规模城镇建设用地开发,但应注重城镇建设用地组团式发展,促进产业结构优化升级;基本适宜区可依靠高度适宜区发展,适度开发城镇建设用地;勉强适宜区城镇建设用地开发受限条件多,以基本农田与生态保护优先,选择性发展具有自然生态保护和经济开发效益的绿色产业;不适宜区应注重通过政策扶持,保障粮食安全和生态安全;④将城镇建设用地适宜性评价结果与《扬州市土地利用总体规划(2006—2020年)》中新增城镇建设用地布局对比分析表明,规划新增城镇建设用地配置基本满足区域供求关系,但有部分位于勉强适宜区与不适宜区,建议将区内部分或全部规划新增城镇建设用地剔除或调整至高度适宜区与基本适宜区。

关键词: 城镇建设用地, 适宜性评价, 供求理论, BP神经网络, 扬州市

Abstract:

We established an evaluation index system of urban construction land suitability based on the theory of supply and demand, and calculated the suitability of urban construction land using BP neural networks in order to construct theoretical and practical foundations for the scientific allocation of urban construction land. Based on the theory of supply and demand, the suitability evaluation index system of urban construction land can be constructed according to background conditions, technical level, location and transportation, intensive degree, population density, and economic development. BP neural networks reflect the suitability of urban construction land for each evaluation unit, which helps to improve the precision of urban construction land suitability evaluation results. The research area can be divided into four regions. The highly suitable region area can be used for large-scale urban construction land development. The basically suitable region can fully develop relying on the highly suitable region and expand urban construction land moderately. The barely suitable region requires basic farmland protection and ecological protection, and the green industry with natural ecological protection and economic development benefits should be selectively developed. The unsuitable region should be given more policy support to ensure food security and ecological security. By comparing the suitability evaluation results of urban construction land and the layout of planning new urban construction land of ‘Rall Plan for Land Utilization of Yangzhou (2006-2020 year)’, most of the planning new urban construction land is located in the highly suitable area and the basically suitable region. However, some planning new urban construction land is located in the barely suitable region and unsuitable region respectively, so some or all of these should be eliminated or adjusted to highly suitable and suitable areas.

Key words: urban construction land, suitability evaluation, theory of supply and demand, BP neural network, Yangzhou City