资源科学 ›› 2016, Vol. 38 ›› Issue (5): 956-969.doi: 10.18402/resci.2016.05.15
收稿日期:
2015-12-10
修回日期:
2016-04-21
出版日期:
2016-05-25
发布日期:
2016-05-23
作者简介:
作者简介:刘兆飞,男,河南郑州人,博士,副研究员,主要从事气候变化及其对水文水资源的影响研究工作。E-mail:
基金资助:
LIU Zhaofei(), WANG Rui, YAO Zhijun(
)
Received:
2015-12-10
Revised:
2016-04-21
Online:
2016-05-25
Published:
2016-05-23
摘要:
蒙古高原受自然与人为因素影响,生态环境面临严峻压力,研究气候变化特征及气候模式评估对该地区气候及生态环境等相关研究具有重要的参考意义。本研究以整个蒙古高原为研究区,研究蒙古高原气温与降水要素的变化趋势,对比研究中国内蒙古自治区与蒙古国地区气候变化特征,并评价了全球耦合模式比较计划第五阶段(CMIP5)模式输出的气温与降水序列在研究区的表现,利用一种改进的秩评分方法对CMIP5模式的模拟能力进行了综合评价。结果表明,蒙古高原过去几十年整体呈增温减湿的趋势,最低气温升温幅度明显大于最高气温升温幅度,中国内蒙古地区变暖趋势强于蒙古国地区;CMIP5模式模拟的平均气温普遍偏低,且低估了该区域的增温趋势,而模拟的降水量普遍偏高。不同要素间,CMIP5模式对平均气温的模拟能力最强,最高与最低气温次之,降水相对较差。模式评价结果对评价指标有较大的依赖性,因此,评估气候模式的区域效果时,建议使用多指标进行综合评价。
刘兆飞, 王蕊, 姚治君. 蒙古高原气温与降水变化特征及CMIP5气候模式评估[J]. 资源科学, 2016, 38(5): 956-969.
LIU Zhaofei,WANG Rui,YAO Zhijun. Air temperature and precipitation over the Mongolian Plateau and assessment of CMIP 5 climate models[J]. Resources Science, 2016, 38(5): 956-969.
表1
CMIP5气候模式"
序号 | 模式 | 分辨率 | 研究机构 | 国家 | |
---|---|---|---|---|---|
纬向 | 经向 | ||||
1 | BCC-CSM1.1 | 2.79 | 2.81 | Beijing Climate Center | 中国 |
中国 | |||||
2 | BNU-ESM | 2.79 | 2.81 | Beijing Normal University | |
3 | FIO-ESM | 2.79 | 2.81 | The First Institute of Oceanography,SOA | 中国 |
4 | FGOALS-g2 | 2.79 | 2.81 | Institute of Atmospheric Physics,Chinese Academy of Sciences | 中国 |
5 | INMCM4.0 | 1.50 | 2.00 | Russian Academy of Sciences,Institute of Numerical Mathematics | 俄罗斯 |
6 | CSIRO-Mk3.6.0 | 1.87 | 1.88 | Commonwealth Scientific and Industrial Research Organization/Queensland Climate Change Centre of Excellence | 澳大利亚 澳大利亚 澳大利亚 |
7 | ACCESS1.0 | 1.25 | 1.88 | Commonwealth Scientific and Industrial Research Organization/Bureau of Meteorology | |
8 | ACCESS1.3 | 1.25 | 1.88 | ||
9 | IPSL-CM5A-LR | 1.89 | 3.75 | Institut Pierre Simon Laplace | 法国 法国 法国 法国 |
10 | IPSL-CM5A-MR | 2.54 | 2.50 | ||
11 | IPSL-CM5B-LR | 1.89 | 3.75 | ||
12 | CNRM-CM5 | 1.40 | 1.41 | Centre National de RecherchesMétéorologiques,Centre Européen de Recherche et de Formation AvancéeenCalculScientifique | |
13 | MPI-ESM-LR | 1.87 | 1.88 | Max Planck Institute for Meteorology | 德国 德国 |
14 | MPI-ESM-MR | 1.87 | 1.88 | ||
15 | EC-EARTH | 1.12 | 1.13 | EC-EARTH consortium published at Irish Centre for High-End Computing | 荷兰/爱尔兰 |
16 | CMCC-CMS | 3.71 | 3.75 | Centro Euro-Mediterraneo sui CambiamentiClimatici | 意大利 |
17 | CanESM2 | 2.79 | 2.81 | Canadian Centre for Climate Modelling and Analysis | 加拿大 |
18 | MIROC-ESM | 2.79 | 2.81 | Atmosphere and Ocean Research Institute (The University of Tokyo),National Institute for Environmental Studies,and Japan Agency for Marine-Earth Science and Technology | 日本 日本 日本 |
19 | MIROC5 | 1.40 | 1.41 | ||
20 | MRI-CGCM3 | 1.12 | 1.13 | Meteorological Research Institute | |
21 | NorESM1-M | 1.89 | 2.50 | Bjerknes Centre for Climate Research,Norwegian Meteorological Institute | 挪威 挪威 |
22 | NorESM1-ME | 1.89 | 2.50 | ||
23 | HadGEM2-A | 1.25 | 1.88 | Met Office Hadley Centre | 英国 英国 英国 |
24 | HadGEM2-CC | 1.25 | 1.88 | ||
25 | HadGEM2-ES | 1.25 | 1.88 | ||
26 | CCSM4 | 0.94 | 1.25 | National Center for Atmospheric Research | 美国 |
27 | CESM1(BGC) | 0.94 | 1.25 | 美国 | |
28 | CESM1(CAM5) | 0.94 | 1.25 | 美国 | |
29 | CESM1(WACCM) | 1.88 | 2.50 | 美国 | |
30 | GISS-E2-H | 2.00 | 2.50 | NASA/GISS (Goddard Institute for Space Studies) | 美国 |
31 | GISS-E2-R | 2.00 | 2.50 | 美国 | |
32 | GFDL-CM3 | 2.00 | 2.50 | Geophysical Fluid Dynamics Laboratory | 美国 |
33 | GFDL-ESM2G | 2.02 | 2.00 | 美国 | |
34 | GFDL-ESM2M | 2.02 | 2.50 | 美国 |
表3
基于改进RS方法的CMIP5模式综合评价结果"
模式 | 各评价指标综合RS评分 | 总评分 | |||
---|---|---|---|---|---|
平均 气温 | 最高 气温 | 最低 气温 | 降水量 | ||
BCC-CSM1.1 | 0.68 | 0.62 | 0.83 | 0.51 | 0.66 |
BNU-ESM | 0.70 | 0.63 | 0.84 | 0.19 | 0.59 |
FIO-ESM | 0.72 | 0.62 | 0.73 | 0.40 | 0.62 |
FGOALS-g2 | 0.57 | 0.47 | 0.75 | 0.63 | 0.60 |
INMCM4.0 | 0.41 | 0.40 | 0.40 | 0.56 | 0.44 |
CSIRO-Mk3.6.0 | 0.65 | 0.50 | 0.73 | 0.57 | 0.61 |
ACCESS1.0 | 0.72 | 0.66 | 0.80 | 0.72 | 0.73 |
ACCESS1.3 | 0.76 | 0.62 | 0.75 | 0.73 | 0.72 |
IPSL-CM5A-LR | 0.35 | 0.53 | 0.22 | 0.65 | 0.44 |
IPSL-CM5A-MR | 0.70 | 0.68 | 0.45 | 0.54 | 0.59 |
IPSL-CM5B-LR | 0.70 | 0.54 | 0.41 | 0.65 | 0.58 |
CNRM-CM5 | 0.48 | 0.59 | 0.69 | 0.70 | 0.61 |
MPI-ESM-LR | 0.73 | 0.70 | 0.74 | 0.78 | 0.74 |
MPI-ESM-MR | 0.71 | 0.67 | 0.73 | 0.69 | 0.70 |
EC-EARTH | 0.70 | 0.68 | 0.78 | 0.78 | 0.73 |
CMCC-CMS | 0.79 | 0.80 | 0.80 | 0.75 | 0.79 |
CanESM2 | 0.74 | 0.66 | 0.77 | 0.49 | 0.67 |
MIROC-ESM | 0.55 | 0.45 | 0.67 | 0.44 | 0.53 |
MIROC5 | 0.79 | 0.70 | 0.87 | 0.67 | 0.76 |
MRI-CGCM3 | 0.66 | 0.61 | 0.75 | 0.82 | 0.71 |
NorESM1-M | 0.85 | 0.80 | 0.86 | 0.69 | 0.80 |
NorESM1-ME | 0.59 | - | - | 0.67 | 0.63 |
HadGEM2-A | 0.68 | 0.60 | 0.77 | 0.73 | 0.70 |
HadGEM2-CC | 0.47 | 0.42 | 0.67 | 0.66 | 0.55 |
HadGEM2-ES | 0.62 | 0.57 | 0.75 | 0.69 | 0.66 |
CCSM4 | 0.69 | 0.61 | 0.81 | 0.71 | 0.70 |
CESM1(BGC) | 0.75 | 0.70 | 0.78 | 0.68 | 0.73 |
CESM1(CAM5) | 0.68 | 0.70 | 0.66 | 0.70 | 0.68 |
CESM1(WACCM) | 0.71 | 0.77 | 0.68 | 0.66 | 0.70 |
GISS-E2-H | 0.36 | 0.37 | 0.49 | 0.40 | 0.40 |
GISS-E2-R | 0.44 | 0.46 | 0.56 | 0.36 | 0.46 |
GFDL-CM3 | 0.70 | 0.68 | 0.76 | 0.70 | 0.71 |
GFDL-ESM2G | 0.63 | 0.60 | 0.66 | 0.76 | 0.66 |
GFDL-ESM2M | 0.73 | 0.70 | 0.71 | 0.75 | 0.72 |
[1] | Lu N,Wilske B,Ni J,et al.Climate change in Inner Mongolia from 1955 to 2005-trends at regional,biome and local scales[J]. Environmental Research Letters,2009,4(4):045006-6. |
[2] | 闫慧明,陈伟娜,杨方兴,等. 过去50年内蒙古极端气候事件时空格局特征[J]. 地理研究,2014,33(1):13-22. |
[Yan H M,Chen W N,Yang F X,et al.The spatial and temporal analysis of extreme climatic events in Inner Mongolia during the past 50 years[J]. Geographical Research,2014,33(1):13-22.] | |
[3] | Nandintsetseg B,Greene J S,Goulden C E.Trends in extreme daily precipitation and temperature near Lake Hövsgöl,Mongolia[J]. International Journal of Climatology,2007,27(3):341-347. |
[4] | Sternberg T,Thomas D,Middleton N.Drought dynamics on the Mongolian steppe,1970-2006[J]. International Journal of Climat-ology,2011,31(12):1823-1830. |
[5] | 王凌,甄霖,刘雪林,等. 蒙古高原中部气候变化及影响因素比较研究[J]. 地理研究,2008,27(1):171-180. |
[Wang L,Zhen L,Liu X L,et al.Comparative studies on climate changes and influencing factors in central Mongolian Plateau Region[J]. Geographical Research,2008,27(1):171-180.] | |
[6] | 侯琼,郭瑞清,杨丽桃. 内蒙古气候变化及其对主要农作物的影响[J]. 中国农业气象,2009,30(4):560-564. |
[Hou Q,Guo R Q,Yang L T.Climate change and its impact on main crops in Inner Mongolia[J]. Chinese Journal of Agrometeorology,2009,30(4):560-564.] | |
[7] | 尹燕亭,侯向阳,运向军. 气候变化对内蒙古草原生态系统影响的研究进展[J]. 草业科学,2011,28(6):1132-1139. |
[Yin Y T,Hou X Y,Yun X J.Advances in the climate change influencing grassland ecosystems in Inner Mongolia[J]. Pratacultural Science,2011,28(6):1132-1139.] | |
[8] | 顾润源,周伟灿,白美兰,等. 气候变化对内蒙古草原典型植物物候的影响[J]. 生态学报,2012,32(3):767-776. |
[Gu R Y,Zhou W C,Bai M L,et al.Impacts of climate change on phenological phase of herb in the main grassland in Inner Mongolia[J]. Acta Ecologica Sinica,2012,32(3):767-776.] | |
[9] | 周锡饮,师华定,王秀茹. 气候变化和人类活动对蒙古高原植被覆盖变化的影响[J]. 干旱区研究,2014,31(4):604-610. |
[Zhou X Y,Shi H D,Wang X R.Impact of climate change and human activities on vegetation coverage in the Mongolian Plateau[J]. Arid Zone Research,2014,31(4):604-610.] | |
[10] | Solomon S,Qin D,Manning M,et al.Climate Change 2007:The Physical Science Basis[M]. Cambridge and New York:Cambridge University Press,2007. |
[11] | Trenberth K E.The use and abuse of climate models[J]. Nature,1997,386(6621):131-133. |
[12] | Murphy J M, Sexton D M H, Barnett D N, et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations[J]. Nature,2004,430(7001):768-772. |
[13] | Dessai S,Lu X F,Hulme M.Limited sensitivity analysis of regional climate change probabilities for the 21st century[J]. Journal of Geophysical Research Atmospheres,2005,110(19):2679-2689. |
[14] | Fu G B,Barber M E,Chen S L.The impacts of climate change on regional hydrological regimes in the Spokane River watershed[J]. Journal of Hydrologic Engineering,2007,12(5):452-461. |
[15] | Giorgi F,Mearns L O.Calculation of average,uncertainty range,and reliability of regional climate changes from AOGCM simu-lations via the ‘‘reliability ensemble averaging’’ (REA)method[J]. Journal of Climate,2002,15(10):1141-1158. |
[16] | Giorgi F,Francisco R.Evaluating uncertainties in the prediction of regional climate change[J]. Geophysical Research Letters,2000,27(9):1295-1298. |
[17] | Bader D C,Covey C,Gutowski W J,et al.Climate Models:An Assessment of Strengths and Limitations[R]. Washington:Department of Energy,Office of Biological and Environmental Research,2008. |
[18] | Hulme M,Brown O.Portraying climate scenario uncertainties in relation to tolerable regional climate change[J]. Climatic Research,1998,10(1):1-14. |
[19] | Kittel T G F,Giorgi F,Meehl G A. Intercomparison of regional biases and doubled CO2-sensitivity of coupled atmosphere-ocean general circulation model experiments[J]. Climate Dynamics,1998,14(1):1-15. |
[20] | Harvey L D D,Wigley T M L. Charactering and comparing control-run variability of eight coupled AOGCMs and of observations Part 1:Temperature[J]. Climate Dynamics,2003,21(7):619-646. |
[21] | Cubasch U,von Storch H,Waszkewitz J,et al. Estimates of climate change in Southern Europe derived from dynamical climate model output[J]. Climate Research,1996,7(2):129-149. |
[22] | Whetton P H,England M H, O’Farrell S P, et al. Global comparison of the regional rainfall results of enhanced greenhouse coupled and mixed layer ocean experiments:Implications for climate change scenario development[J]. Climatic Change,1995,33(4):497-519. |
[23] | Nieto S,Puebla C R.Comparison of precipitation from observed data and general circulation models over the Iberian Peninsula[J]. Journal of Climate,2006,19(17):4254-4275. |
[24] | Perkins S E,Pitman A J,Holbrook N J,et al.Evaluation of the AR4 climate models’ simulated daily maximum temperature,minimum temperature,and precipitation over Australia using probability density functions[J]. Journal of Climate,2007,20(17):4356-4376. |
[25] | Maxino C C, McAvaney B J, Pitman A J, et al. Ranking the AR4 climate models over the Murray-Darling basin using simulate maximum temperature,minimum temperature and precipitation[J]. International Journal of Climatology,2008,28(8):1097-1112. |
[26] | Taylor K,Stouffer R,Meehl G.An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society,2012,93(4):485-498. |
[27] | 郭彦,董文杰,任福民,等. CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较[J]. 气候变化研究进展,2013,9(3):181-186. |
[Guo Y,Dong W J,Ren F M,et al.Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations[J]. Progressus Inquisi-tiones De Mutatione Climatis,2013,9(2):181-186.] | |
[28] | 陈晓晨,徐影,许崇海,等. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展,2014,10(3):217-225. |
[Chen X C,Xu Y,Xu C H,et al.Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Progressus Inquisitiones De Mutatione Climatis,2014,10(3):217-225.] | |
[29] | 初祁,徐宗学,刘文丰,等. 24个CMIP5模式对长江流域模拟能力评估[J]. 长江流域资源与环境,2015,24(1):81-89. |
[Chu Q,Xu Z X,Liu W F,et al.Assessment on 24 global climate models in the CMIP5 over the Yangtze River[J]. Resources and Environ-ment in the Yangtze Basin,2015,24(1):81-89.] | |
[30] | 胡芩,姜大膀,范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学,2014,38(5):924-938. |
[Hu Q,Jiang D B,Fan G Z.Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences,2014,38(5):924-938.] | |
[31] | 赵宗慈,罗勇,黄建斌. 评估43个CMIP5模式模拟全球能量平衡能力[J]. 气候变化研究进展,2015,11(3):227-230. |
[Zhao Z C,Luo Y,Huang J B.Assessment of global energy balance as simulated by 43 CMIP5 climate models[J]. Progressus Inquisi-tiones De Mutatione Climatis,2015,11(3):227-230.] | |
[32] | 姜燕敏,吴昊旻. 20个CMIP5模式对中亚地区年平均气温模拟能力评估[J]. 气候变化研究进展,2013,9(2):110-116. |
[Jiang Y M,Wu H W.Simulation capabilities of 20 CMIP5 models for annual mean air temperatures in central Asia[J]. Progressus Inquisitiones De Mutatione Climatis,2013,9(2):110-116.] | |
[33] | Xu Z X,Liu Z F,Fu G B,et al.Trends of major hydroclimatic variables in the Tarim River Basin during the past 50 Years[J]. Journal of Arid Environments,2010,74(2):256-267. |
[34] | 刘兆飞. 气候变化对塔里木河流域源区主要水文要素的影响研究[D]. 北京:北京师范大学,2010. |
[Liu Z F.Impact of Climate Change on Major Hydrological Processes in the Headwater Catch-ment of the Tarim River Basin[D]. Beijing:Beijing Normal University,2010.] | |
[35] | Fu G B,Liu Z F,Charles S P,et al.A score-based method for assessing the performance of GCMs:A case study of southeastern Australia[J]. Journal of Geophysical Research:Atmospheres,2013,118(10):4154-4167. |
[1] | 孙婉馨, 张黎, 任小丽, 何洪林, 吕妍, 牛忠恩, 常清青. 1998—2017年中国典型森林生态系统潜在蒸散的变化趋势及成因[J]. 资源科学, 2020, 42(5): 920-932. |
[2] | 余灏哲, 李丽娟, 李九一. 基于量-质-域-流的京津冀水资源承载力综合评价[J]. 资源科学, 2020, 42(2): 358-371. |
[3] | 游珍, 封志明, 杨艳昭, 施慧, 李鹏. 栅格尺度的西藏自治区人居环境自然适宜性综合评价[J]. 资源科学, 2020, 42(2): 394-406. |
[4] | 胡东滨, 蔡洪鹏, 陈晓红, 孟凡永, 罗岳平, 潘海婷. 基于证据推理的流域水质综合评价法——以湘江水质评价为例[J]. 资源科学, 2019, 41(11): 2020-2031. |
[5] | 李洪庆, 刘黎明, 郑菲, 赵姚阳. 基于水环境质量控制的高集约化农业景观格局优化研究[J]. 资源科学, 2018, 40(1): 44-52. |
[6] | 秦伟山, 孙剑锋, 张义丰, 李世泰. 中国县级海岛经济体脆弱性综合评价及空间分异研究[J]. 资源科学, 2017, 39(9): 1692-1701. |
[7] | 李玮, 段利民, 刘廷玺, 格日勒吐, 高瑞忠, BurenScharaw, 于长翔. 1961—2015年内蒙古高原内陆河东部流域极端降水时空变化特征分析[J]. 资源科学, 2017, 39(11): 2153-2165. |
[8] | 李佳, 周祖昊, 王浩, 刘佳嘉. 松花江流域最大冻土深度的时空分布及对气温变化的响应[J]. 资源科学, 2017, 39(1): 147-156. |
[9] | 刘庆生, 刘高焕, 黄翀, 姚治君, 黄河清. 蒙古高原乌兰巴托-丰镇草地样带植被与土壤属性的空间分布[J]. 资源科学, 2016, 38(5): 982-993. |
[10] | 吴春生, 刘高焕, 刘庆生, 黄翀, 张韵婕, 管续栋. 蒙古高原中北部土壤有机质空间分布研究[J]. 资源科学, 2016, 38(5): 994-1002. |
[11] | 郭媛媛, 江源, 董满宇, 文岩, 王明昌, 焦亮. 1961-2013年华北晋冀山地和黄土高原区树木生长季变化趋势[J]. 资源科学, 2016, 38(4): 758-767. |
[12] | 张春梅, 葛雨婷, 席建超, 杨俊. 中国人文旅游基地适宜性综合评价研究[J]. 资源科学, 2016, 38(12): 2221-2232. |
[13] | 程志会, 刘锴, 孙静, 席建超, 杨俊. 中国冰雪旅游基地适宜性综合评价研究[J]. 资源科学, 2016, 38(12): 2233-2243. |
[14] | 孙静, 杨俊, 席建超. 中国海洋旅游基地适宜性综合评价研究[J]. 资源科学, 2016, 38(12): 2244-2255. |
[15] | 张万诚, 郑建萌, 马涛, 任菊章. 1961-2012年云南省极端气温时空演变规律研究[J]. 资源科学, 2015, 37(4): 710-722. |
|